Description Usage Arguments Details Value References
The beta solver using the sparse PCA.
1 2 3 4 5 6 7 8 |
x |
the data matrix X_{n\times p} |
y |
the response vector Y_{n\times 1} |
paras |
the combination of parameters (λ_2, λ_1)\
|
max.steps |
|
sparse |
|
eps |
the tolerance of the stopping criterion for the termination |
The standard objective function of elastic net is
1/(2n) \| Y-Xβ\|_2^2 + λ (α \|β\|_1 + (1-α )/2\|β\|_2^2) .
But here we use the following objective function
1/(2n) \| Y-Xβ\|_2^2 + λ_1 \|β\|_1 + λ_2/2 \|β\|_2^2 .
the solution β in each subproblem
Zou, Hui, Trevor Hastie, and Robert Tibshirani. "Sparse principal component analysis." Journal of computational and graphical statistics 15.2 (2006): 265-286.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.