ObjFun_FG_S_PCA_L2: Objective Function of Feature Grouping and Sparse PCA with L2...

Description Usage Arguments Details

View source: R/FGSPCAUtils.R

Description

Objective Function of Feature Grouping and Sparse PCA with L2 loss.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
ObjFun_FG_S_PCA_L2(
  x,
  A,
  B,
  tau_S,
  lambda1,
  lambda2 = 0.1,
  lambda3 = 0.1,
  nnConstraint = FALSE,
  sparseTruncated = TRUE
)

Arguments

x

the data matrix X_{n\times p}, where n is the number of observations, p is the number of features.

A

matrix A in the FGSPCA problem

B

matrix B in the FGSPCA problem

tau_S

τ, a global τ, which is assigned to τ_1=τ_2=τ .

lambda1

λ_1, the tuning parameter corresponding to p_1(\cdot)

lambda2

λ_2, the tuning parameter corresponding to p_2(\cdot)

lambda3

λ_3, the tuning parameter corresponding to p_3(\cdot)

nnConstraint

Boolean, indicating the non-negative constraint is true or false, default FALSE

sparseTruncated

Boolean, indicating whether to use the truncated L1 penalty or not for sparsity, default TRUE

Details

The L2 loss is defined as follows

(X - X B A^T)^2 .

The penalty function with three parts is defined as follows,

Ψ(β) = λ_{1}p_1(β) + λ_{2}p_2(β) + λ_{3}p_3(β)

where

p_1(β) = ∑_{j=1}^p \min\{\frac{|β_j|}{τ_1}, 1\} ,

p_2(β) = ∑_{j < j', (j, j') \in E} \min\{\frac{|β_j - β_{j'}|}{τ_2}, 1\},

p_3(β) = ∑_{j=1}^p (\min\{β_j, 0\})^2 .

With the setting of lambda2=0, nnConstraint=FALSE, sparseTruncated=FALSE, it corresponds to the same objective function of sparse PCA; \

ObjFun_FG_S_PCA_L2(x, A, B, tau_S, lambda1, lambda2=0, lambda3=0.1, nnConstraint=FALSE, sparseTruncated=FALSE

With setting of lambda2=0, nnConstraint=FALSE, sparseTruncated=TRUE, corresponds to Objective function of truncated sparse PCA. \

ObjFun_FG_S_PCA_L2(x, A, B, tau_S, lambda1, lambda2=0, lambda3=0.1, nnConstraint=FALSE, sparseTruncated=TRUE

By tuning the different setting of lambda2, nnConstraint, sparseTruncated, we get different combination of models.


ipapercodes/FGSPCA documentation built on Dec. 20, 2021, 7:58 p.m.