Description Usage Arguments Details
Objective Function of Feature Grouping and Sparse PCA with L2 loss.
1 2 3 4 5 6 7 8 9 10 11 | ObjFun_FG_S_PCA_L2(
x,
A,
B,
tau_S,
lambda1,
lambda2 = 0.1,
lambda3 = 0.1,
nnConstraint = FALSE,
sparseTruncated = TRUE
)
|
x |
the data matrix X_{n\times p}, where n is the number of observations, p is the number of features. |
A |
matrix A in the FGSPCA problem |
B |
matrix B in the FGSPCA problem |
tau_S |
τ, a global τ, which is assigned to τ_1=τ_2=τ . |
lambda1 |
λ_1, the tuning parameter corresponding to p_1(\cdot) |
lambda2 |
λ_2, the tuning parameter corresponding to p_2(\cdot) |
lambda3 |
λ_3, the tuning parameter corresponding to p_3(\cdot) |
nnConstraint |
Boolean, indicating the non-negative constraint is true or false, default |
sparseTruncated |
Boolean, indicating whether to use the truncated L1 penalty or not for sparsity,
default |
The L2 loss is defined as follows
(X - X B A^T)^2 .
The penalty function with three parts is defined as follows,
Ψ(β) = λ_{1}p_1(β) + λ_{2}p_2(β) + λ_{3}p_3(β)
where
p_1(β) = ∑_{j=1}^p \min\{\frac{|β_j|}{τ_1}, 1\} ,
p_2(β) = ∑_{j < j', (j, j') \in E} \min\{\frac{|β_j - β_{j'}|}{τ_2}, 1\},
p_3(β) = ∑_{j=1}^p (\min\{β_j, 0\})^2 .
With the setting of lambda2=0, nnConstraint=FALSE, sparseTruncated=FALSE
,
it corresponds to the same objective function of sparse PCA; \
ObjFun_FG_S_PCA_L2(x, A, B, tau_S, lambda1, lambda2=0, lambda3=0.1, nnConstraint=FALSE, sparseTruncated=FALSE
With setting of lambda2=0, nnConstraint=FALSE, sparseTruncated=TRUE
,
corresponds to Objective function of truncated sparse PCA. \
ObjFun_FG_S_PCA_L2(x, A, B, tau_S, lambda1, lambda2=0, lambda3=0.1, nnConstraint=FALSE, sparseTruncated=TRUE
By tuning the different setting of lambda2
, nnConstraint
, sparseTruncated
,
we get different combination of models.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.