Description Usage Arguments Details Value
The FSGFun with L2 loss is a subproblem of the FGSPCA with L2 loss.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
x |
the data matrix X_{n\times p}, where n is the number of observations, p is the number of features. |
y |
the response vector Y_{n\times 1} with length n |
beta |
β, the estimation of β |
tau_S |
τ, a global τ, which is assigned to τ_1=τ_2=τ . |
lambda1 |
λ_1, the tuning parameter corresponding to p_1(\cdot) |
lambda2 |
λ_2, the tuning parameter corresponding to p_2(\cdot) |
lambda3 |
λ_3, the tuning parameter corresponding to p_3(\cdot) |
v |
the initial value of the Lagrange multiplier, with default |
c |
the acceleration constant to speed up the convergence procedure, default |
iter_m_max |
the maximum number of the outer iterations (i.e. the m-iteration), default |
iter_k_max |
the maximum number of the inner iterations (i.e. the k-iteration), default |
condition_tol |
the conditional tolerance of both the outer and inner iterations, default |
nnConstraint |
Boolean, indicating the non-negative constraint is true or false, default |
sparseTruncated |
Boolean, indicating whether to use the truncated L1 penalty or not for sparsity,
default |
loss_return |
Boolean, indicating whether return the loss or not, default |
The parameters of x
, y
, beta
, lambda1
, lambda2
, lambda3
are in inherit from ObjFunL2
.
the solution β or with the corresponding loss if loss_return=TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.