estimate_multipleBERPM: Estimation of

Usage Arguments Examples

View source: R/functions_estimate.R

Usage

1
estimate_multipleBERPM(partitions, presence.tables, nodes, objects, effects, mean.priors, sd.priors, start.chains = NULL, burnin.1 = 30, thining.1 = 10, num.chains = 3, length.chains = 1000, burnin.2 = 30, neighborhood.partition = c(0.7, 0.3, 0, 0, 0, 0), neighborhood.augmentation = NULL, sizes.allowed = NULL, sizes.simulated = NULL, parallel = F, cpus = 1)

Arguments

partitions

Observed partitions.

presence.tables

Matrix indicating which actors were present for each observations (mandatory).

nodes

Data frame containing the nodes.

objects

Objects used for statistics calculation. A list with a vector "name" and a vector "object".

effects

Effects or sufficient statistics. A list with a vector "names" and a vector "objects".

mean.priors

Means of the normal distributions of prior parameters.

sd.priors

Standard deviations of the normal distributions of prior parameters.

start.chains
burnin.1
thining.1
num.chains
length.chains
burnin.2
neighborhood.partition
neighborhood.augmentation
sizes.allowed
sizes.simulated
parallel
cpus

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (partitions, presence.tables, nodes, objects, effects,
    mean.priors, sd.priors, start.chains = NULL, burnin.1 = 30,
    thining.1 = 10, num.chains = 3, length.chains = 1000, burnin.2 = 30,
    neighborhood.partition = c(0.7, 0.3, 0, 0, 0, 0), neighborhood.augmentation = NULL,
    sizes.allowed = NULL, sizes.simulated = NULL, parallel = F,
    cpus = 1)
{
    num.effects <- length(effects$names)
    z.obs <- rowSUms(computeStatistics_multiple(partitions, presence.tables,
        nodes, effects, objects))
    print("Observed statistics")
    print(z.obs)
    print("Burn-in")
    print(burnin.1)
    print("Thining")
    print(thining.1)
    if (is.null(start.chains)) {
        start.chains <- list()
        for (p in 1:num.effects) {
            start.chains[[p]] <- rnorm(num.effects, mean = mean.priors,
                sd = sd.priors)
        }
    }
    if (is.null(neighborhood.augmentation)) {
        neighborhood.augmentation <- rep(0.1, num.effects)
    }
    results_exchange <- draw_exchangealgorithm_multiple(partitions,
        z.obs, presence.tables, nodes, objects, effects, mean.priors,
        sd.priors, start.chains, burnin.1, thining.1, num.chains,
        length.chains, burnin.2, neighborhood.partition, neighborhood.augmentation,
        sizes.allowed, sizes.simulated, parallel, cpus)
    results <- data.frame(effect = effects$names, object = effects$objects,
        post.mean = results_exchange$post.mean, post.sd = results_exchange$post.sd)
    print_results_bayesian(results)
    return(list(results = results, all.chains = results_exchange$all.chains))
  }

isci1102/ERPM documentation built on Jan. 18, 2022, 12:25 a.m.