#' Linear Mixed Effect Model Table
#'
#' `r lifecycle::badge("experimental")` \cr
#' Generate tables with multiple response, predictor, or two-way interaction variables (only `lmer` models are supported).
#' You can pass multiple variables for one type of variable (either response, pred, or interaction) only.
#' If you want to pass multiple variables for multiple type of variable, try lmer_model_explore instead.
#' At the moment, multi-categorical variables are not supported as predictors or interactions (but control is fine). Binary variable should be `numeric` instead of `factor`
#' This function also do not supports changing random slopes.
#' Please use `other_parameters` if you want to add non-changing interaction term.
#'
#' @param data `data.frame`
#' @param response_variable response variable. Support `dplyr::select()` syntax.
#' @param predictor_variable predictor variable. Support `dplyr::select()` syntax. It will automatically remove the response variable from predictor variable, so you can use `contains()` or `start_with()` safely.
#' @param random_effect The random-effects terms in the format of `(|)`. See lm4::lmer for specifics.
#' @param two_way_interaction_variable Two-way interaction variable. Each two-way interaction variable will interact with the predictor variable. Support `dplyr::select()` syntax.
#' @param control_variable control variables. Support `dplyr::select()` syntax.
#' @param other_parameters catch call for all other parameters that need to be entered (e.g., non-changing interaction terms). Have to be `character` type.
#' @param marginal_alpha the set marginal_alpha level for marginally significant (denoted by `.`). Set to 0.05 if do not want marginally significant denotation.
#' @param return_result It set to `TRUE`, it return the model estimates data frame.
#' @param verbose default is `TRUE`. Set to `FALSE` to suppress outputs
#' @param show_p show the p-value in parenthesis
#' @param ... additional parameters pass to lmerTest::lmer()
#'
#' @return
#' data.frame
#' @export
#'
#' @examples
#' # If you want all varibles to be changing, try lmer_model_explore.
#' # For more examples, see ?lm_model_table.
#'
#' # Changing interaction terms with a non-changing response variable
#' lme_model_table(data = popular,
#' response_variable = popular,
#' predictor_variable = texp,
#' two_way_interaction_variable = c(extrav,sex),
#' random_effect = '(1 | class)')
#'
#' # A non-changing interaction term with changing response variables
#' lme_model_table(data = popular,
#' response_variable = c(popular,sex),
#' predictor_variable = texp,
#' other_parameters = 'texp*extrav',
#' random_effect = '(1 | class)')
lme_model_table = function(...,
data,
response_variable,
predictor_variable,
two_way_interaction_variable = NULL,
random_effect,
control_variable = NULL,
other_parameters = NULL,
marginal_alpha = 0.1,
return_result = FALSE,
verbose = TRUE,
show_p = FALSE
){
# parse select syntax
response_variable <- data %>%
tidyselect::eval_select(data = ., expr = enquo(response_variable),strict = TRUE) %>%
names()
predictor_variable <- data %>%
tidyselect::eval_select(data = ., expr = enquo(predictor_variable),strict = TRUE) %>%
names()
control_variable = data %>%
tidyselect::eval_select(data = ., expr = enquo(control_variable),strict = TRUE) %>%
names()
two_way_interaction_variable = data %>%
tidyselect::eval_select(data = ., expr = dplyr::enquo(two_way_interaction_variable),strict = TRUE) %>%
names()
two_way_interaction_variable = two_way_interaction_variable[!two_way_interaction_variable %in% c(response_variable)]
variable_nums = c(length(response_variable),length(predictor_variable),length(two_way_interaction_variable))
if (sum(variable_nums > 1) == 1) {
} else {
stop('You can only pass multiple variables for one type of variable (either response, pred, or interaction). Try lmer_model_explore instead.')
}
# Multiple response variables
if (length(response_variable) > 1) {
for (i in 1:length(response_variable)) {
formula = paste(response_variable[i],'~',predictor_variable)
if (length(control_variable) != 0) {
formula = paste(formula,"+",paste(control_variable, collapse = " + "))
}
if (length(other_parameters) != 0) {
formula = paste(formula,"+",paste(other_parameters, collapse = " + "))
}
formula = paste(formula,'+',random_effect)
formula <- stats::as.formula(formula)
model = lmerTest::lmer(formula = formula, data = data,...)
model_summary = model %>%
parameters::parameters() %>%
tibble::as_tibble() %>%
dplyr::select(dplyr::any_of(c('Parameter', 'Coefficient', 'p'))) %>%
coefficent_to_p(marginal_alpha = marginal_alpha,show_p = show_p) %>%
tibble::add_row(tibble::tibble(Parameter = 'df', Coefficient = format_round(insight::get_df(model),digits = 3))) %>%
tibble::add_row(tibble::tibble(Parameter = 'r2_conditional', Coefficient = format_round(performance::r2(model)$R2_conditional,digits = 3))) %>%
tibble::add_row(tibble::tibble(Parameter = 'r2_marginal', Coefficient = format_round(performance::r2(model)$R2_marginal,digits = 3))) %>%
dplyr::rename(!!response_variable[i] := 'Coefficient')
if (i == 1) {
model_summary_final = model_summary
} else{
model_summary_final = model_summary_final %>% dplyr::full_join(model_summary,by = "Parameter")
}
}
model_summary_final =
model_summary_final %>% dplyr::rename('Parameter/Focal_response' = 'Parameter')
}
# Multiple predictor variables
if (length(predictor_variable) > 1) {
model_summary_final = tibble::tibble()
for (i in 1:length(predictor_variable)) {
formula = paste(response_variable,'~',predictor_variable[i])
if (length(control_variable) != 0) {
formula = paste(formula,"+",paste(control_variable, collapse = " + "))
}
if (length(other_parameters) != 0) {
formula = paste(formula,"+",paste(other_parameters, collapse = " + "))
}
formula = paste(formula,'+',random_effect)
formula <- stats::as.formula(formula)
model = lmerTest::lmer(formula = formula, data = data,...)
model_summary = model %>%
parameters::parameters() %>%
tibble::as_tibble() %>%
dplyr::select(dplyr::any_of(c('Parameter', 'Coefficient', 'p'))) %>%
dplyr::mutate(Parameter = dplyr::if_else(.data$Parameter == predictor_variable[i],'Focal Predictor',.data$Parameter)) %>%
coefficent_to_p(marginal_alpha = marginal_alpha,show_p = show_p) %>%
tibble::add_row(tibble::tibble(Parameter = 'df', Coefficient = format_round(insight::get_df(model),digits = 3))) %>%
tibble::add_row(tibble::tibble(Parameter = 'r2_conditional', Coefficient = format_round(performance::r2(model)$R2_conditional,digits = 3))) %>%
tibble::add_row(tibble::tibble(Parameter = 'r2_marginal', Coefficient = format_round(performance::r2(model)$R2_marginal,digits = 3))) %>%
dplyr::rename(!!predictor_variable[i] := 'Coefficient')
if (i == 1) {
model_summary_final = model_summary
} else{
model_summary_final = model_summary_final %>% dplyr::full_join(model_summary,by = "Parameter")
}
}
model_summary_final =
model_summary_final %>% dplyr::rename('Parameter/Focal_pred' = 'Parameter')
}
if (length(two_way_interaction_variable) > 1) {
model_summary_final = tibble::tibble()
for (i in 1:length(two_way_interaction_variable)) {
two_way_interaction_terms = two_way_interaction_terms(c(predictor_variable,two_way_interaction_variable[i]))
formula = paste(response_variable,'~',predictor_variable,'+',two_way_interaction_terms)
if (length(control_variable) != 0) {
formula = paste(formula,"+",paste(control_variable, collapse = " + "))
}
if (length(other_parameters) != 0) {
formula = paste(formula,"+",paste(other_parameters, collapse = " + "))
}
formula = paste(formula, '+',random_effect)
formula <- stats::as.formula(formula)
model = lmerTest::lmer(formula = formula, data = data,...)
model_summary = model %>%
parameters::parameters() %>%
tibble::as_tibble() %>%
dplyr::select(dplyr::any_of(c('Parameter', 'Coefficient', 'p'))) %>%
dplyr::mutate(Parameter = dplyr::if_else(.data$Parameter == two_way_interaction_variable[i],'Focal_interact_pred',.data$Parameter)) %>%
dplyr::mutate(Parameter = dplyr::if_else(.data$Parameter == stringr::str_replace(paste0(predictor_variable,':',two_way_interaction_variable[i]),pattern = '\\*', replacement = ':'),'Focal_interact_term',.data$Parameter)) %>%
coefficent_to_p(marginal_alpha = marginal_alpha,show_p = show_p) %>%
tibble::add_row(tibble::tibble(Parameter = 'df', Coefficient = format_round(insight::get_df(model),digits = 3))) %>%
tibble::add_row(tibble::tibble(Parameter = 'r2_conditional', Coefficient = format_round(performance::r2(model)$R2_conditional,digits = 3))) %>%
tibble::add_row(tibble::tibble(Parameter = 'r2_marginal', Coefficient = format_round(performance::r2(model)$R2_marginal,digits = 3))) %>%
dplyr::rename(!!two_way_interaction_terms := 'Coefficient')
if (i == 1) {
model_summary_final = model_summary
} else{
model_summary_final = model_summary_final %>%
dplyr::full_join(model_summary,by = "Parameter")
}
}
model_summary_final =
model_summary_final %>% dplyr::rename('Parameter/Focal_interact_term' = 'Parameter')
}
if (verbose == TRUE) {
print_table(model_summary_final,marginal_alpha = marginal_alpha)
if (show_p == TRUE) {
super_print(paste('Note: Coefficient (p-value): + p < ',marginal_alpha,', * p < 0.05, ** p < 0.01, *** p < 0.001',sep = ''))
} else{
super_print(paste('Note: + < ',marginal_alpha,', * p < 0.05, ** p < 0.01, *** p < 0.001',sep = ''))
}
}
if (return_result) {
return(model_summary_final)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.