#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDlognormalInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .recodeOptionsLDLognormal(options)
#### Show distribution section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("log-normal distribution"),
parSupportMoments = .ldLognormalParsSupportMoments,
formulaPDF = .ldFormulaLognormalPDF,
formulaCDF = .ldFormulaLognormalCDF,
formulaQF = .ldFormulaLognormalQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillLognormalEstimatesTable)
return()
}
.recodeOptionsLDLognormal <- function(options){
options[['parValNames']] <- c("mu", "sigma")
options[['pars']] <- list(meanlog = options[['mu']], sdlog = options[['sigma']])
options[['pdfFun']] <- stats::dlnorm
options[['cdfFun']] <- stats::plnorm
options[['qFun']] <- stats::qlnorm
options[['rFun']] <- stats::rlnorm
options[['distNameInR']] <- "lnorm"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = 0, max = Inf)
options$lowerBound <- c(-Inf, 0)
options$upperBound <- c(Inf, Inf)
options$transformations <- c(mu = "meanlog", sigma = "sdlog")
options
}
### text fill functions -----
.ldLognormalParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("log mean: μ %s","\u2208 \u211D")
pars[[2]] <- gettextf("log standard deviation: %s", "σ \u2208 \u211D<sup>+</sup>")
support <- "x \u2208 \u211D<sup>+</sup>"
moments <- list()
moments$expectation <- gettext("exp(μ + σ<sup>2</sup>/2)")
moments$variance <- gettext("[exp(σ<sup>2</sup>) - 1] exp(2μ + σ<sup>2</sup>)")
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaLognormalPDF <- function(options){
if(options[['parametrization']] == "scale"){
text <- "<MATH>
f(x; <span style='color:red'>β</span>) =
</MATH>"
} else {
text <- "<MATH>
f(x; <span style='color:red'>λ</span>) = <span style='color:red'>λ</span>exp(-<span style='color:red'>λ</span>x)
</MATH>"
}
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaLognormalCDF <- function(options){
if(options$parametrization == "scale"){
text <- "<MATH>
F(x; <span style='color:red'>β</span>) =
</MATH>"
}
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaLognormalQF <- function(options){
if(options$parametrization == "rate"){
text <- "<MATH>
Q(p; <span style='color:red'>β</span>) =
</MATH>"
}
return(gsub(pattern = "\n", replacement = " ", x = text))
}
#### Table functions ----
.ldFillLognormalEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
par <- c(meanlog = "\u03BC", sdlog = "\u03C3")
res <- results$structured
res$parName <- par
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.