#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDnegbinomialInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsNegbinomial(options)
#### Show negbinomial section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("negative binomial distribution"),
parSupportMoments = .ldNegbinomialParsSupportMoments,
formulaPMF = .ldFormulaNegbinomialPMF,
formulaCMF = .ldFormulaNegbinomialCDF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
errors <- .ldCheckInteger(variable, errors)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "discrete")
#### Fit data and assess fit ----
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillNegbinomialEstimatesTable)
return()
}
### options ----
.ldRecodeOptionsNegbinomial <- function(options){
if(options$parametrization == "prob"){
options$mu <- options$size*options$par / (1-options$par)
} else {
options$mu <- options$par
}
options[['parValNames']] <- c("size", "par")
options[['pars']] <- list(size = options[['size']], mu = options[['mu']])
options[['pdfFun']] <- stats::dnbinom
options[['cdfFun']] <- stats::pnbinom
options[['qFun']] <- stats::qnbinom
options[['rFun']] <- stats::rnbinom
options[['distNameInR']] <- "nbinom"
options <- .ldOptionsDeterminePlotLimits(options, FALSE)
options$support <- list(min = 0, max = Inf)
options$lowerBound <- c(0, 0)
options$upperBound <- c(Inf, Inf)
options$transformations <- c(size = "size", prob = "size / (size + mu)", mu = "mu")
options
}
### text fill functions -----
.ldNegbinomialParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- switch(options[['parametrization']],
prob = gettextf("number of successes: %s", "k \u2208 \u211D: \u03D5 \u2265 0"),
gettextf("dispersion: %s", "\u03D5 \u2208 \u211D: \u03D5 \u2265 0"))
pars[[2]] <- switch(options[['parametrization']],
prob = gettextf("probability of success: %s", "p \u2208 \u211D: 0 \u2264 p \u2264 1"),
gettextf("mean: %s", "\u03BC \u2208 \u211D: \u03BC \u2265 0"))
support <- "x \u2208 {0, 1, 2, ...}"
moments <- list()
moments$expectation <- switch(options[['parametrization']],
prob = "pk/(1-p)",
"\u03BC")
moments$variance <- switch(options[['parametrization']],
prob = "pk/(1-p)<sup>2</sup>",
"\u03BC + \u03BC<sup>2</sup>/\u03D5")
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaNegbinomialPMF <- function(options){
if(options$parametrization == "prob"){
text <- "<MATH>
f(x; <span style='color:red'>\u03D5</span>, <span style='color:blue'>p</span>) =
</MATH>"
} else{
text <- "<MATH>
f(x; <span style='color:red'>\u03D5</span>, <span style='color:blue'>\u03BC</span>) =
</MATH>"
}
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaNegbinomialCDF <- function(options){
if(options$parametrization == "prob"){
text <- "<MATH>
F(x; <span style='color:red'>\u03D5</span>, <span style='color:blue'>p</span>) =
</MATH>"
} else{
text <- "<MATH>
F(x; <span style='color:red'>\u03D5</span>, <span style='color:blue'>\u03BC</span>) =
</MATH>"
}
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaNegbinomialQF <- function(options){
if(options$parametrization == "prob"){
text <- "<MATH>
Q(p; <span style='color:red'>\u03D5</span>, <span style='color:blue'>p</span>) =
</MATH>"
} else{
text <- "<MATH>
Q(p; <span style='color:red'>\u03D5</span>, <span style='color:blue'>\u03BC</span>) =
</MATH>"
}
return(gsub(pattern = "\n", replacement = " ", x = text))
}
#### Table functions ----
.ldFillNegbinomialEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
res <- results$structured
if(options$parametrization == "prob"){
res$parName <- c("k", "p", "\u03BC")
res <- res[res$par != "mu",,drop=FALSE]
} else{
res$parName <- c("\u03D5", "p", "\u03BC")
res <- res[res$par != "prob",,drop=FALSE]
}
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.