#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDparetoInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsPareto(options)
#### Show pareto section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("Pareto distribution"),
parSupportMoments = .ldParetoParsSupportMoments,
formulaPDF = .ldFormulaParetoPDF,
formulaCDF = .ldFormulaParetoCDF,
formulaQF = .ldFormulaParetoQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
analyticEstimates <- .ldMLEPareto(variable, options, ready, errors)
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillParetoEstimatesTable, analyticEstimates)
return()
}
### options ----
.ldRecodeOptionsPareto <- function(options){
options[['parValNames']] <- c("shape", "scale")
options[['pars']] <- list(shape = options[["shape"]], scale = options[["scale"]])
options[['pdfFun']] <- dpareto
options[['cdfFun']] <- ppareto
options[['qFun']] <- qpareto
options[['rFun']] <- rpareto
options[['distNameInR']] <- "pareto"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = 0, max = Inf)
options$lowerBound <- c(0, 0)
options$upperBound <- c(Inf, Inf)
options$transformations <- c(shape = "shape", scale = "scale")
options
}
### text fill functions -----
.ldParetoParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("shape: %1$s \nscale: %2$s", "k \u2208 \u211D<sup>+</sup>", "λ \u2208 \u211D<sup>+</sup>")
support <- "x \u2208 \u211D<sup>+</sup>"
moments <- list()
moments$expectation <- "λ"
moments$variance <- "λ<sup>2</sup>"
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaParetoPDF <- function(options){
}
.ldFormulaParetoCDF <- function(options){
}
.ldFormulaParetoQF <- function(options){
}
#### Table functions ----
.ldFillParetoEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
par <- c(shape = "\u03B1", scale = "\u03B2")
res <- results$structured
res <- res[res$par %in% names(par),]
res$parName <- par
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
#### Distribution functions ----
dpareto <- function(x, shape, scale, log = FALSE) {
lfirst <- log(shape) + shape * log(scale)
lsecond <- (shape + 1) * log(x)
out <- ifelse(x < scale, -Inf, lfirst - lsecond)
if(!log) out <- exp(out)
return(out)
}
ppareto <- function(q, shape, scale, lower.tail = TRUE, log.p = FALSE) {
out <- ifelse(q < scale, 0, 1 - (scale / q) ^ shape)
if(!lower.tail) out <- 1-out
if(log.p) out <- log(out)
return(out)
}
qpareto <- function(p, shape, scale, lower.tail = TRUE, log.p = FALSE) {
if(log.p) p <- exp(p)
if(!lower.tail) p <- 1-p
out <- scale / (1-p)^(1/shape)
return(out)
}
rpareto <- function(n, shape, scale) {
p <- runif(n = n)
q <- qpareto(p, shape, scale
)
return(q)
}
#### MLE estimation ----
.ldMLEPareto <- function(variable, options, ready, errors) {
if(!ready || !isFALSE(errors)) return()
results <- list()
pLowerCI <- (1-options[['ciIntervalInterval']]) / 2
pUpperCI <- 1 - pLowerCI
n <- length(variable)
scaleHat <- min(variable)
shapeHat <- n / sum(log(variable/scaleHat))
results$structured <- data.frame(par = c("shape", "scale"),
estimate = c(shapeHat, scaleHat),
se = c(shapeHat / sqrt(n), NA),
lower = c(NA, NA),
upper = c(NA, NA))
results$fitdist <- list()
results$fitdist$convergence <- 0
results$fitdist$estimate <- setNames(results$structured$estimate, results$structured$par)
results$ci.possible <- FALSE
results$se.possible <- FALSE
results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.