#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDtSkewedGeneralizedInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsTSkewedGeneralized(options)
#### Show t section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("skewed generalized t-distribution"),
parSupportMoments = .ldTSkewedGeneralizedParsSupportMoments,
formulaPDF = .ldFormulaTSkewedGeneralizedPDF,
formulaCDF = .ldFormulaTSkewedGeneralizedCDF,
formulaQF = .ldFormulaTSkewedGeneralizedQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillTSkewedGeneralizedEstimatesTable)
return()
}
### options ----
.ldRecodeOptionsTSkewedGeneralized <- function(options){
options[['parValNames']] <- c("mu", "sigma", "lambda", "p", "q")
#options[['pars']] <- setNames(options[options[['parValNames']]], options[['parValNames']])
options[['pars']] <- list(mu = options[['mu']], sigma = options[['sigma']], lambda = options[['lambda']],
pp = options[['p']], qq = options[['q']])
options[['pdfFun']] <- function(x, mu, sigma, lambda, pp, qq, ...) sgt::dsgt(x = x, mu = mu, sigma = sigma, lambda = lambda, p = pp, q = qq, mean.cent = FALSE, var.adj = FALSE, ...)
options[['cdfFun']] <- function(q, mu, sigma, lambda, pp, qq, ...) sgt::psgt(quant = q, mu = mu, sigma = sigma, lambda = lambda, p = pp, q = qq, mean.cent = FALSE, var.adj = FALSE, ...)
options[['qFun']] <- function(p, mu, sigma, lambda, pp, qq, ...) sgt::qsgt(prob = p, mu = mu, sigma = sigma, lambda = lambda, p = pp, q = qq, mean.cent = FALSE, var.adj = FALSE, ...)
options[['rFun']] <- function(n, mu, sigma, lambda, pp, qq, ...) sgt::rsgt(n = n, mu = mu, sigma = sigma, lambda = lambda, p = pp, q = qq, mean.cent = FALSE, var.adj = FALSE, ...)
options[['distNameInR']] <- "sgt"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = -Inf, max = Inf)
options$lowerBound <- c(-Inf, 0, -1, 0, 0)
options$upperBound <- c( Inf, Inf, 1, Inf, Inf)
options$transformations <- c(mu = "mu", sigma = "sigma", lambda = "lambda", pp = "pp", qq = "qq")
options
}
### text fill functions -----
.ldTSkewedGeneralizedParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("location: %s", "\u03BC \u2208 \u211D")
pars[[2]] <- gettextf("scale: %s", "\u03C3 \u2208 \u211D<sup>+</sup>")
pars[[3]] <- gettextf("skewness: %s", "\u03BB \u2208 [-1, 1]")
pars[[4]] <- gettextf("kurtosis: %s", "p \u2208 \u211D<sup>+</sup>")
pars[[5]] <- gettextf("kurtosis: %s", "q \u2208 \u211D<sup>+</sup>")
support <- "x \u2208 \u211D"
moments <- list()
moments$expectation <- gettextf("see Wikipedia: %s", "https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#Moments")
moments$variance <- gettextf("see Wikipedia: %s", "https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#Moments")
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaTSkewedGeneralizedPDF <- function(options){
text <- "<MATH>
f(x; <span style='color:red'>&df;</span>, <span style='color:blue'>ncp</span>) =
</MATH>"
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaTSkewedGeneralizedCDF <- function(options){
text <- "<MATH>
F(x; <span style='color:red'>&df;</span>, <span style='color:blue'>ncp</span>) =
</MATH>"
return(gsub(pattern = "\n", replacement = " ", x = text))
}
.ldFormulaTSkewedGeneralizedQF <- function(options){
text <- "<MATH>
Q(p; <span style='color:red'>&df;</span>, <span style='color:blue'>ncp</span>) =
</MATH>"
return(gsub(pattern = "\n", replacement = " ", x = text))
}
#### Table functions ----
.ldFillTSkewedGeneralizedEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
pars <- c(mu = "\u03BC", sigma = "\u03C3", lambda = "\u03BB", pp = "p", qq = "q")
res <- results$structured
res <- res[res$par %in% names(pars),]
res$parName <- pars
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.