#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDtriangularInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .recodeOptionsLDTriangular(options)
#### Show distribution section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("triangular distribution"),
parSupportMoments = .ldTriangularParsSupportMoments,
formulaPDF = .ldFormulaTriangularPDF,
formulaCDF = .ldFormulaTriangularCDF,
formulaQF = .ldFormulaTriangularQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
if(ready && isFALSE(errors)) {
options$lowerBound <- c(-Inf, max(variable), min(variable))
options$upperBound <- c(min(variable), Inf, max(variable))
}
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillTriangularEstimatesTable)
return()
}
.recodeOptionsLDTriangular <- function(options){
options[['parValNames']] <- c("a", "b", "c")
options[['pars']] <- list(a = options[['a']], b = options[['b']], c = options[['c']])
options[['pdfFun']] <- dtriangular
options[['cdfFun']] <- ptriangular
options[['qFun']] <- qtriangular
options[['rFun']] <- rtriangular
options[['distNameInR']] <- "triangular"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = -Inf, max = Inf)
options$lowerBound <- c(-Inf, -Inf, -Inf)
options$upperBound <- c( Inf, Inf, Inf)
options$transformations <- c(a = "a", b = "b", c = "c")
options
}
### text fill functions -----
.ldTriangularParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("minimum: %s","a \u2208 \u211D")
pars[[2]] <- gettextf("maximum: %s","b \u2208 \u211D")
pars[[3]] <- gettextf("mode: %s","c \u2208 \u211D; a < c < b")
support <- "x \u2208 \u211D; a < x < b"
moments <- list()
moments$expectation <- "(a+b+c)/3"
moments$variance <- "(a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> - ab - ac - bc)/18"
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaTriangularPDF <- function(options){
}
.ldFormulaTriangularCDF <- function(options){
}
.ldFormulaTriangularQF <- function(options){
}
#### Table functions ----
.ldFillTriangularEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
par <- c(a = "a", b = "b", c = "c")
res <- results$structured
res$parName <- par
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
#### distribution functions ----
dtriangular <- function(x, a, b, c, log = FALSE) {
out <- sapply(x, function(xx) {
if(xx < a || xx > b) {
return(0)
} else if(xx == a || xx == b) {
return(.Machine$double.xmin)
} else if(xx < c) {
return(2*(xx-a) / ((b-a)*(c-a)))
} else if(xx == c) {
return(2/(b-a))
} else {
return(2*(b-xx) / ((b-a)*(b-c)))
}
})
if(log) out <- log(out)
return(out)
}
ptriangular <- function(q, a, b, c, lower.tail = TRUE, log.p = FALSE) {
out <- sapply(q, function(qq) {
if(qq < a) {
return(0)
} else if(qq <= c) {
return((qq-a)^2 / ((b-a)*(c-a)))
} else if(qq <= b) {
return(1 - (b-qq)^2/ ((b-a)*(b-c)))
} else {
return(1)
}
})
if(!lower.tail) out <- 1 - out
if(log.p) out <- log(out)
return(out)
}
qtriangular <- function(p, a, b, c, lower.tail = TRUE, log.p = FALSE) {
if(log.p) p <- exp(p)
if(!lower.tail) p <- 1-p
n <- length(p)
q <- sapply(seq_len(n), function(i) {.getQuantileTriangular(p[i], a, b, c) })
return(q)
}
.getQuantileTriangular <- function(p, a, b, c) {
o <- try(optim(par = c, fn = .pErrorTriangular, lower = a, upper = b, method = "L-BFGS-B",
p = p, pars = list(a = a, b = b, c = c)), silent = TRUE)
if(inherits(o, "try-error")) {
return(NA)
} else {
return(o[["par"]])
}
}
.pErrorTriangular <- function(q, p, pars) {
args <- c(q=q, pars)
pp <- do.call(ptriangular, args)
return((pp-p)^2)
}
rtriangular <- function(n, a, b, c) {
p <- runif(n, 0, 1)
q <- qtriangular(p, a, b, c)
return(q)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.