#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDuniformInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsUniform(options)
#### Show beta section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("uniform distribution"),
parSupportMoments = .ldUniformParsSupportMoments,
formulaPDF = .ldFormulaUniformPDF,
formulaCDF = .ldFormulaUniformCDF,
formulaQF = .ldFormulaUniformQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
analyticEstimates <- .ldMLEUniform(variable, options, ready, errors)
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillUniformEstimatesTable, analyticEstimates)
return()
}
### options ----
.ldRecodeOptionsUniform <- function(options){
options[['parValNames']] <- c("lowerBoundPar", "upperBoundPar")
options[['pars']] <- list(min = options[['lowerBoundPar']], max = options[['upperBoundPar']])
options[['pdfFun']] <- dunif
options[['cdfFun']] <- punif
options[['qFun']] <- qunif
options[['rFun']] <- runif
options[['distNameInR']] <- "unif"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = -Inf, max = Inf)
options$lowerBound <- c(0, 0)
options$upperBound <- c(Inf, Inf)
options$transformations <- c(min = "min", max = "max")
options
}
### text fill functions -----
.ldUniformParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("lower bound: %s", "a \u2208 \u211D<sup>+</sup>")
pars[[2]] <- gettextf("upper bound: %s", "b \u2208 \u211D<sup>+</sup>")
support <- "x \u2208 [a, b]"
moments <- list()
moments$expectation <- "(a+b)/2"
moments$variance <- "(b-a)<sup>2</sup>/12"
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaUniformPDF <- function(options){
}
.ldFormulaUniformCDF <- function(options){
}
.ldFormulaUniformQF <- function(options){
}
#### Table functions ----
.ldFillUniformEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
pars <- c(min = "a", max = "b")
res <- results$structured
res <- res[res$par %in% names(pars),]
res$parName <- c(pars)
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
#### MLE estimation ----
.ldMLEUniform <- function(variable, options, ready, errors) {
if(!ready || !isFALSE(errors)) return()
results <- list()
mm <- range(variable, na.rm = TRUE)
range <- diff(mm)
n <- length(variable)
alpha <- 1-options[["ciIntervalInterval"]]
offSet <- alpha^(-1/(n-1)) - 1
ci <- mm + c(-1, 1) * offSet * range
results$structured <- data.frame(par = c("min", "max"),
estimate = mm,
se = c(NA, NA),
lower = c(ci[1], mm[2]),
upper = c(mm[1], ci[2])
)
results$fitdist <- list()
results$fitdist$convergence <- 0
results$fitdist$estimate <- setNames(results$structured$estimate, results$structured$par)
results$ci.possible <- TRUE
results$se.possible <- FALSE
results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.