#
# Copyright (C) 2013-2021 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
mlClassificationKnn <- function(jaspResults, dataset, options, ...) {
# Preparatory work
dataset <- .mlClassificationReadData(dataset, options)
.mlClassificationErrorHandling(dataset, options, type = "knn")
# Check if analysis is ready to run
ready <- .mlClassificationReady(options, type = "knn")
# Compute results and create the model summary table
.mlClassificationTableSummary(dataset, options, jaspResults, ready, position = 1, type = "knn")
# If the user wants to add the classes to the data set
.mlClassificationAddPredictionsToData(dataset, options, jaspResults, ready)
# Add test set indicator to data
.mlAddTestIndicatorToData(options, jaspResults, ready, purpose = "classification")
# Create the data split plot
.mlPlotDataSplit(dataset, options, jaspResults, ready, position = 2, purpose = "classification", type = "knn")
# Create the confusion table
.mlClassificationTableConfusion(dataset, options, jaspResults, ready, position = 3)
# Create the class proportions table
.mlClassificationTableProportions(dataset, options, jaspResults, ready, position = 4)
# Create the validation measures table
.mlClassificationTableMetrics(dataset, options, jaspResults, ready, position = 5)
# Create the feature importance table
.mlTableFeatureImportance(options, jaspResults, ready, position = 6, purpose = "classification")
# Create the shap table
.mlTableShap(dataset, options, jaspResults, ready, position = 7, purpose = "classification")
# Create the ROC curve
.mlClassificationPlotRoc(dataset, options, jaspResults, ready, position = 8, type = "knn")
# Create the Andrews curves
.mlClassificationPlotAndrews(dataset, options, jaspResults, ready, position = 9)
# Create the classification error plot
.mlKnnPlotError(dataset, options, jaspResults, ready, position = 10, purpose = "classification")
# Create the weights plot
.mlKnnPlotWeights(options, jaspResults, position = 11)
# Decision boundaries
.mlClassificationPlotBoundaries(dataset, options, jaspResults, ready, position = 12, type = "knn")
}
.knnClassification <- function(dataset, options, jaspResults) {
# Import model formula from jaspResults
formula <- jaspResults[["formula"]]$object
# Set model specific parameters
weights <- options[["weights"]]
distance <- options[["distanceParameterManual"]]
# Split the data into training and test sets
if (options[["holdoutData"]] == "testSetIndicator" && options[["testSetIndicatorVariable"]] != "") {
# Select observations according to a user-specified indicator (included when indicator = 1)
trainingIndex <- which(dataset[, options[["testSetIndicatorVariable"]]] == 0)
} else {
# Sample a percentage of the total data set
trainingIndex <- sample.int(nrow(dataset), size = ceiling((1 - options[["testDataManual"]]) * nrow(dataset)))
}
trainingAndValidationSet <- dataset[trainingIndex, ]
# Create the generated test set indicator
testIndicatorColumn <- rep(1, nrow(dataset))
testIndicatorColumn[trainingIndex] <- 0
if (options[["modelOptimization"]] == "manual") {
# Just create a train and a test set (no optimization)
trainingSet <- trainingAndValidationSet
testSet <- dataset[-trainingIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
testFit <- kknn::kknn(
formula = formula, train = trainingSet, test = testSet, k = options[["noOfNearestNeighbours"]],
distance = distance, kernel = weights, scale = FALSE
)
nn <- options[["noOfNearestNeighbours"]]
} else if (options[["modelOptimization"]] == "optimized") {
# Create a train, validation and test set (optimization)
validationIndex <- sample.int(nrow(trainingAndValidationSet), size = ceiling(options[["validationDataManual"]] * nrow(trainingAndValidationSet)))
testSet <- dataset[-trainingIndex, ]
validationSet <- trainingAndValidationSet[validationIndex, ]
trainingSet <- trainingAndValidationSet[-validationIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
# Check for factor levels in the validation set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, validationSet, "validation")
if (options[["modelValid"]] == "validationManual") {
nnRange <- 1:options[["maxNearestNeighbors"]]
accuracyStore <- numeric(length(nnRange))
trainAccuracyStore <- numeric(length(nnRange))
startProgressbar(length(nnRange))
for (i in nnRange) {
validationFit <- kknn::kknn(
formula = formula, train = trainingSet, test = validationSet, k = i,
distance = options[["distanceParameterManual"]], kernel = options[["weights"]], scale = FALSE
)
accuracyStore[i] <- sum(diag(prop.table(table(validationFit$fitted.values, validationSet[, options[["target"]]]))))
trainingFit <- kknn::kknn(
formula = formula, train = trainingSet, test = trainingSet, k = i,
distance = options[["distanceParameterManual"]], kernel = options[["weights"]], scale = FALSE
)
trainAccuracyStore[i] <- sum(diag(prop.table(table(trainingFit$fitted.values, trainingSet[, options[["target"]]]))))
progressbarTick()
}
nn <- switch(options[["modelOptimization"]],
"optimized" = nnRange[which.max(accuracyStore)]
)
testFit <- kknn::kknn(
formula = formula, train = trainingSet, test = testSet, k = nn,
distance = options[["distanceParameterManual"]], kernel = options[["weights"]], scale = FALSE
)
} else if (options[["modelValid"]] == "validationKFold") {
nnRange <- 1:options[["maxNearestNeighbors"]]
accuracyStore <- numeric(length(nnRange))
startProgressbar(length(nnRange))
for (i in nnRange) {
validationFit <- kknn::cv.kknn(
formula = formula, data = trainingAndValidationSet, distance = options[["distanceParameterManual"]], kernel = options[["weights"]],
kcv = options[["noOfFolds"]], k = i
)
accuracyStore[i] <- sum(diag(prop.table(table(validationFit[[1]][, 1], validationFit[[1]][, 2]))))
progressbarTick()
}
nn <- switch(options[["modelOptimization"]],
"optimized" = nnRange[which.max(accuracyStore)]
)
validationFit <- kknn::cv.kknn(
formula = formula, data = trainingAndValidationSet, distance = options[["distanceParameterManual"]], kernel = options[["weights"]],
kcv = options[["noOfFolds"]], k = nn
)
validationFit <- list(fitted.values = validationFit[[1]][, 2])
testFit <- kknn::kknn(formula = formula, train = trainingAndValidationSet, test = testSet, k = nn, distance = distance, kernel = weights, scale = FALSE)
trainingSet <- trainingAndValidationSet
validationSet <- trainingAndValidationSet
} else if (options[["modelValid"]] == "validationLeaveOneOut") {
nnRange <- 1:options[["maxNearestNeighbors"]]
validationFit <- kknn::train.kknn(formula = formula, data = trainingAndValidationSet, ks = nnRange, scale = FALSE, distance = options[["distanceParameterManual"]], kernel = options[["weights"]])
accuracyStore <- as.numeric(1 - validationFit$MISCLASS)
nn <- switch(options[["modelOptimization"]],
"optimized" = nnRange[which.max(accuracyStore)]
)
validationFit <- list(fitted.values = validationFit[["fitted.values"]][[1]])
testFit <- kknn::kknn(formula = formula, train = trainingAndValidationSet, test = testSet, k = nn, distance = distance, kernel = weights, scale = FALSE)
trainingSet <- trainingAndValidationSet
validationSet <- trainingAndValidationSet
}
}
# Create results object
result <- list()
result[["formula"]] <- formula
result[["model"]] <- testFit
result[["model"]]$predictive <- kknn::train.kknn(formula = formula, data = trainingSet, ks = nn, distance = options[["distanceParameterManual"]], kernel = options[["weights"]])
result[["nn"]] <- nn
result[["weights"]] <- weights
result[["distance"]] <- distance
result[["confTable"]] <- table("Pred" = testFit$fitted.values, "Real" = testSet[, options[["target"]]])
result[["testAcc"]] <- sum(diag(prop.table(result[["confTable"]])))
result[["auc"]] <- .classificationCalcAUC(testSet, trainingSet, options, "knnClassification", nn = nn, distance = distance, weights = weights)
result[["ntrain"]] <- nrow(trainingSet)
result[["ntest"]] <- nrow(testSet)
result[["testReal"]] <- testSet[, options[["target"]]]
result[["testPred"]] <- testFit$fitted.values
result[["train"]] <- trainingSet
result[["test"]] <- testSet
result[["testIndicatorColumn"]] <- testIndicatorColumn
result[["classes"]] <- predict(kknn::kknn(formula = formula, train = trainingSet, test = dataset, k = nn, distance = distance, kernel = weights, scale = FALSE))
if (options[["modelOptimization"]] != "manual") {
result[["accuracyStore"]] <- accuracyStore
result[["valid"]] <- validationSet
result[["nvalid"]] <- nrow(validationSet)
result[["validationConfTable"]] <- table("Pred" = validationFit$fitted.values, "Real" = validationSet[, options[["target"]]])
result[["validAcc"]] <- sum(diag(prop.table(result[["validationConfTable"]])))
if (options[["modelValid"]] == "validationManual") {
result[["trainAccuracyStore"]] <- trainAccuracyStore
}
}
result[["explainer"]] <- DALEX::explain(result[["model"]], type = "multiclass", data = result[["train"]], y = result[["train"]][, options[["target"]]], predict_function = function(model, data) predict(model$predictive, newdata = data, type = "prob"))
if (nlevels(result[["testReal"]]) == 2) {
result[["explainer_fi"]] <- DALEX::explain(result[["model"]], type = "classification", data = result[["train"]], y = as.numeric(result[["train"]][, options[["target"]]]) - 1, predict_function = function(model, data) predict(model$predictive, newdata = data, type = "raw"))
} else {
result[["explainer_fi"]] <- DALEX::explain(result[["model"]], type = "multiclass", data = result[["train"]], y = result[["train"]][, options[["target"]]], predict_function = function(model, data) predict(model$predictive, newdata = data, type = "prob"))
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.