#
# Copyright (C) 2013-2021 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
mlRegressionKnn <- function(jaspResults, dataset, options, state = NULL) {
# Preparatory work
dataset <- .readDataRegressionAnalyses(dataset, options)
.mlRegressionErrorHandling(dataset, options, type = "knn")
# Check if analysis is ready to run
ready <- .mlRegressionReady(options, type = "knn")
# Compute results and create the model summary table
.mlRegressionTableSummary(dataset, options, jaspResults, ready, position = 1, type = "knn")
# If the user wants to add the values to the data set
.mlRegressionAddPredictionsToData(dataset, options, jaspResults, ready)
# Add test set indicator to data
.mlAddTestIndicatorToData(options, jaspResults, ready, purpose = "regression")
# Create the data split plot
.mlPlotDataSplit(dataset, options, jaspResults, ready, position = 2, purpose = "regression", type = "knn")
# Create the evaluation metrics table
.mlRegressionTableMetrics(dataset, options, jaspResults, ready, position = 3)
# Create the feature importance table
.mlTableFeatureImportance(options, jaspResults, ready, position = 4, purpose = "regression")
# Create the shap table
.mlTableShap(dataset, options, jaspResults, ready, position = 5, purpose = "regression")
# Create the predicted performance plot
.mlRegressionPlotPredictedPerformance(options, jaspResults, ready, position = 6)
# Create the mean squared error plot
.mlKnnPlotError(dataset, options, jaspResults, ready, position = 7, purpose = "regression")
# Create the weights plot
.mlKnnPlotWeights(options, jaspResults, position = 8)
}
.knnRegression <- function(dataset, options, jaspResults, ready) {
# Import model formula from jaspResults
formula <- jaspResults[["formula"]]$object
# Set model specific parameters
weights <- options[["weights"]]
distance <- options[["distanceParameterManual"]]
# Split the data into training and test sets
if (options[["holdoutData"]] == "testSetIndicator" && options[["testSetIndicatorVariable"]] != "") {
# Select observations according to a user-specified indicator (included when indicator = 1)
trainingIndex <- which(dataset[, options[["testSetIndicatorVariable"]]] == 0)
} else {
# Sample a percentage of the total data set
trainingIndex <- sample.int(nrow(dataset), size = ceiling((1 - options[["testDataManual"]]) * nrow(dataset)))
}
trainingAndValidationSet <- dataset[trainingIndex, ]
# Create the generated test set indicator
testIndicatorColumn <- rep(1, nrow(dataset))
testIndicatorColumn[trainingIndex] <- 0
if (options[["modelOptimization"]] == "manual") {
# Just create a train and a test set (no optimization)
trainingSet <- trainingAndValidationSet
testSet <- dataset[-trainingIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
testFit <- kknn::kknn(
formula = formula, train = trainingSet, test = testSet, k = options[["noOfNearestNeighbours"]],
distance = distance, kernel = weights, scale = FALSE
)
nn <- options[["noOfNearestNeighbours"]]
} else if (options[["modelOptimization"]] == "optimized") {
# Create a train, validation and test set (optimization)
validationIndex <- sample.int(nrow(trainingAndValidationSet), size = ceiling(options[["validationDataManual"]] * nrow(trainingAndValidationSet)))
testSet <- dataset[-trainingIndex, ]
validationSet <- trainingAndValidationSet[validationIndex, ]
trainingSet <- trainingAndValidationSet[-validationIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
# Check for factor levels in the validation set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, validationSet, "validation")
if (options[["modelValid"]] == "validationManual") {
nnRange <- 1:options[["maxNearestNeighbors"]]
errorStore <- numeric(length(nnRange))
trainErrorStore <- numeric(length(nnRange))
startProgressbar(length(nnRange))
for (i in nnRange) {
validationFit <- kknn::kknn(
formula = formula, train = trainingSet, test = validationSet, k = i,
distance = distance, kernel = weights, scale = FALSE
)
errorStore[i] <- mean((validationFit$fitted.values - validationSet[, options[["target"]]])^2)
trainingFit <- kknn::kknn(
formula = formula, train = trainingSet, test = trainingSet, k = i,
distance = distance, kernel = weights, scale = FALSE
)
trainErrorStore[i] <- mean((trainingFit$fitted.values - trainingSet[, options[["target"]]])^2)
progressbarTick()
}
nn <- switch(options[["modelOptimization"]],
"optimized" = nnRange[which.min(errorStore)]
)
testFit <- kknn::kknn(
formula = formula, train = trainingSet, test = testSet, k = nn,
distance = distance, kernel = weights, scale = FALSE
)
} else if (options[["modelValid"]] == "validationKFold") {
nnRange <- 1:options[["maxNearestNeighbors"]]
errorStore <- numeric(length(nnRange))
startProgressbar(length(nnRange))
for (i in nnRange) {
validationFit <- kknn::cv.kknn(
formula = formula, data = trainingAndValidationSet, distance = distance, kernel = weights,
kcv = options[["noOfFolds"]], k = i
)
errorStore[i] <- mean((validationFit[[1]][, 1] - validationFit[[1]][, 2])^2)
progressbarTick()
}
nn <- switch(options[["modelOptimization"]],
"optimized" = nnRange[which.min(errorStore)]
)
validationFit <- kknn::cv.kknn(
formula = formula, data = trainingAndValidationSet, distance = distance, kernel = weights,
kcv = options[["noOfFolds"]], k = nn
)
validationFit <- list(fitted.values = as.numeric(validationFit[[1]][, 2]))
testFit <- kknn::kknn(formula = formula, train = trainingAndValidationSet, test = testSet, k = nn, distance = distance, kernel = weights, scale = FALSE)
trainingSet <- trainingAndValidationSet
validationSet <- trainingAndValidationSet
} else if (options[["modelValid"]] == "validationLeaveOneOut") {
nnRange <- 1:options[["maxNearestNeighbors"]]
validationFit <- kknn::train.kknn(formula = formula, data = trainingAndValidationSet, ks = nnRange, scale = FALSE, distance = distance, kernel = weights)
errorStore <- as.numeric(validationFit$MEAN.SQU)
nn <- switch(options[["modelOptimization"]],
"optimized" = nnRange[which.min(errorStore)]
)
validationFit <- list(fitted.values = validationFit[["fitted.values"]][[1]])
testFit <- kknn::kknn(formula = formula, train = trainingAndValidationSet, test = testSet, k = nn, distance = distance, kernel = weights, scale = FALSE)
trainingSet <- trainingAndValidationSet
validationSet <- trainingAndValidationSet
}
}
# Use the specified model to make predictions for dataset
dataPredictions <- predict(kknn::kknn(formula = formula, train = trainingSet, test = dataset, k = nn, distance = distance, kernel = weights, scale = FALSE))
# Create results object
result <- list()
result[["formula"]] <- formula
result[["model"]] <- testFit
result[["model"]]$predictive <- kknn::train.kknn(formula = formula, data = trainingSet, ks = nn, distance = options[["distanceParameterManual"]], kernel = options[["weights"]])
result[["nn"]] <- nn
result[["weights"]] <- weights
result[["distance"]] <- distance
result[["testMSE"]] <- mean((testFit$fitted.values - testSet[, options[["target"]]])^2)
result[["ntrain"]] <- nrow(trainingSet)
result[["ntest"]] <- nrow(testSet)
result[["train"]] <- trainingSet
result[["test"]] <- testSet
result[["testReal"]] <- testSet[, options[["target"]]]
result[["testPred"]] <- testFit$fitted.values
result[["testIndicatorColumn"]] <- testIndicatorColumn
result[["values"]] <- dataPredictions
if (options[["modelOptimization"]] != "manual") {
result[["accuracyStore"]] <- errorStore
result[["validMSE"]] <- mean((validationFit$fitted.values - validationSet[, options[["target"]]])^2)
result[["nvalid"]] <- nrow(validationSet)
result[["valid"]] <- validationSet
if (options[["modelValid"]] == "validationManual") {
result[["trainAccuracyStore"]] <- trainErrorStore
}
}
result[["explainer"]] <- DALEX::explain(result[["model"]], type = "regression", data = result[["train"]][, options[["predictors"]], drop = FALSE], y = result[["train"]][, options[["target"]]], predict_function = function(model, data) predict(model$predictive, newdata = data))
return(result)
}
.mlKnnPlotError <- function(dataset, options, jaspResults, ready, position, purpose) {
if (!is.null(jaspResults[["errorVsKPlot"]]) || !options[["errorVsKPlot"]] || options[["modelOptimization"]] == "manual") {
return()
}
plotTitle <- switch(purpose,
"classification" = gettext("Classification Accuracy Plot"),
"regression" = gettext("Mean Squared Error Plot")
)
plot <- createJaspPlot(plot = NULL, title = plotTitle, width = 400, height = 300)
plot$position <- position
if (purpose == "regression") {
plot$dependOn(options = c("errorVsKPlot", .mlRegressionDependencies()))
} else {
plot$dependOn(options = c("errorVsKPlot", .mlClassificationDependencies()))
}
jaspResults[["errorVsKPlot"]] <- plot
if (!ready) {
return()
}
result <- switch(purpose,
"classification" = jaspResults[["classificationResult"]]$object,
"regression" = jaspResults[["regressionResult"]]$object
)
ylabel <- switch(purpose,
"classification" = gettext("Classification Accuracy"),
"regression" = gettext("Mean Squared Error")
)
if (options[["modelValid"]] == "validationManual") {
xvalues <- rep(1:options[["maxNearestNeighbors"]], 2)
yvalues1 <- result[["accuracyStore"]]
yvalues2 <- result[["trainAccuracyStore"]]
yvalues <- c(yvalues1, yvalues2)
type <- rep(c(gettext("Validation set"), gettext("Training set")), each = length(yvalues1))
plotData <- data.frame(x = xvalues, y = yvalues, type = type)
xBreaks <- jaspGraphs::getPrettyAxisBreaks(c(0, plotData$x), min.n = 4)
yBreaks <- jaspGraphs::getPrettyAxisBreaks(plotData$y, min.n = 4)
pointData <- data.frame(
x = result[["nn"]],
y = yvalues1[result[["nn"]]]
)
p <- ggplot2::ggplot(data = plotData, ggplot2::aes(x = x, y = y)) +
jaspGraphs::geom_line(mapping = ggplot2::aes(linetype = type)) +
ggplot2::scale_x_continuous(name = gettext("Number of Nearest Neighbors"), breaks = xBreaks, limits = c(0, max(xBreaks))) +
ggplot2::scale_y_continuous(name = ylabel, breaks = yBreaks, limits = range(yBreaks)) +
ggplot2::labs(linetype = NULL) +
ggplot2::scale_linetype_manual(values = c(2, 1)) +
jaspGraphs::geom_point(data = pointData, ggplot2::aes(x = x, y = y), fill = "red", inherit.aes = FALSE) +
jaspGraphs::geom_rangeframe() +
jaspGraphs::themeJaspRaw(legend.position = "top")
} else if (options[["modelValid"]] != "validationManual") {
xvalues <- 1:options[["maxNearestNeighbors"]]
yvalues <- result[["accuracyStore"]]
type <- rep(gettext("Training and validation set"), each = length(xvalues))
plotData <- data.frame(x = xvalues, y = yvalues, type = type)
xBreaks <- jaspGraphs::getPrettyAxisBreaks(c(0, plotData$x), min.n = 4)
yBreaks <- jaspGraphs::getPrettyAxisBreaks(plotData$y, min.n = 4)
p <- ggplot2::ggplot(data = plotData, ggplot2::aes(x = x, y = y, linetype = type)) +
jaspGraphs::geom_line() +
ggplot2::scale_x_continuous(name = gettext("Number of Nearest Neighbors"), breaks = xBreaks, limits = c(0, max(xBreaks))) +
ggplot2::scale_y_continuous(name = ylabel, breaks = yBreaks, limits = range(yBreaks)) +
jaspGraphs::geom_point(ggplot2::aes(x = x, y = y, linetype = type), data = data.frame(x = result[["nn"]], y = yvalues[result[["nn"]]], type = gettext("Training and validation set")), fill = "red") +
ggplot2::labs(linetype = NULL) +
jaspGraphs::geom_rangeframe() +
jaspGraphs::themeJaspRaw(legend.position = "top")
}
plot$plotObject <- p
}
.mlKnnPlotWeights <- function(options, jaspResults, position) {
if (!is.null(jaspResults[["weightsPlot"]]) || !options[["weightsPlot"]]) {
return()
}
weights <- switch(options[["weights"]],
"rectangular" = gettext("Rectangular"),
"triangular" = gettext("Triangular"),
"epanechnikov" = gettext("Epanechnikov"),
"biweight" = gettext("Biweight"),
"triweight" = gettext("Triweight"),
"cos" = gettext("Cosine"),
"inv" = gettext("Inverse"),
"gaussian" = gettext("Gaussian"),
"rank" = gettext("Rank"),
"optimal" = gettext("Optimal")
)
plot <- createJaspPlot(title = gettextf("%1$s Weight Function", weights), width = 400, height = 300)
plot$position <- position
plot$dependOn(options = c("weightsPlot", "weights"))
jaspResults[["weightsPlot"]] <- plot
if (options[["weights"]] == "rank" || options[["weights"]] == "optimal") {
plot$setError(gettext("Plotting not possible: The selected weighting scheme cannot be visualized separately from the data."))
return()
}
# Weighting schemes from the kknn::kknn() function
func <- switch(options[["weights"]],
"rectangular" = function(x) 1,
"triangular" = function(x) 1 - x,
"epanechnikov" = function(x) 0.75 * (1 - x^2),
"biweight" = function(x) stats::dbeta((x + 1) / 2, shape1 = 3, shape2 = 3),
"triweight" = function(x) stats::dbeta((x + 1) / 2, shape1 = 4, shape2 = 4),
"cos" = function(x) cos(x * pi / 2),
"inv" = function(x) 1 / x,
"gaussian" = function(x) stats::dnorm(x)
)
xBreaks <- jaspGraphs::getPrettyAxisBreaks(c(0, 1), min.n = 4)
yBreaks <- jaspGraphs::getPrettyAxisBreaks(c(0, 1), min.n = 4) # 0.001 for Inf at x = 0 in 'inv' weights
plotFunc <- function(x) func(x) / func(0.001)
p <- ggplot2::ggplot() +
ggplot2::stat_function(fun = plotFunc, size = 1, xlim = c(0.001, 1)) +
ggplot2::scale_x_continuous(name = gettext("Proportion of Max. Distance"), breaks = xBreaks, limits = c(0, 1)) +
ggplot2::scale_y_continuous(name = gettext("Relative Weight"), breaks = yBreaks, limits = c(0, 1)) +
jaspGraphs::geom_rangeframe() +
jaspGraphs::themeJaspRaw()
plot$plotObject <- p
}
# kknn::kknn calls stats::model.matrix which needs these two functions and looks for them by name in the global namespace
contr.dummy <- kknn::contr.dummy
contr.ordinal <- kknn::contr.ordinal
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.