get_predictions_clm2 <- function(model, fitfram, ci.lvl, linv, ...) {
stop("`ggpredict()` does currently not support clm2-models.", call. = FALSE)
# does user want standard errors?
se <- !is.null(ci.lvl) && !is.na(ci.lvl)
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- .975
fitfram <- cbind(data.frame(as.factor(insight::get_response(model))), fitfram)
colnames(fitfram)[1] <- insight::find_response(model)
# prediction, with CI
prdat <-
stats::predict(
model,
newdata = fitfram,
type = "prob",
interval = se,
level = ci,
...
)
# convert to data frame.
prdat <- as.data.frame(prdat)
# bind predictions to model frame
fitfram <- cbind(prdat, fitfram)
# get levels of response
lv <- levels(insight::get_response(model))
# for proportional ordinal logistic regression (see ordinal::clm),
# we have predicted values for each response category. Hence,
# gather columns. Since we also have conf. int. for each response
# category, we need to gather multiple columns at once
if (isTRUE(se)) {
# length of each variable block
l <- seq_len(ncol(prdat) / 3)
colnames(fitfram)[l] <- lv
fitfram <- .multiple_gather(
fitfram,
names_to = "response.level",
values_to = c("predicted", "conf.low", "conf.high"),
columns = list(l, l + length(l), l + 2 * length(l))
)
} else {
fitfram <- .gather(fitfram, names_to = "response.level", values_to = "predicted", colnames(prdat))
# No CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
fitfram
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.