get_predictions_lme <- function(model, fitfram, ci.lvl, linv, type, terms, value_adjustment, model_class, vcov.fun, vcov.type, vcov.args, condition, ...) {
# does user want standard errors?
se <- (!is.null(ci.lvl) && !is.na(ci.lvl)) || !is.null(vcov.fun)
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- .975
if (inherits(model, "glmmPQL"))
pr.type <- "link"
else
pr.type <- "response"
if (type %in% c("re", "random")) {
level <- 1
} else {
level <- 0
}
prdat <-
stats::predict(
model,
newdata = fitfram,
type = pr.type,
level = level,
...
)
# copy predictions
fitfram$predicted <- as.vector(prdat)
# did user request standard errors? if yes, compute CI
if (se) {
se.pred <-
.standard_error_predictions(
model = model,
prediction_data = fitfram,
value_adjustment = value_adjustment,
terms = terms,
model_class = model_class,
type = type,
vcov.fun = vcov.fun,
vcov.type = vcov.type,
vcov.args = vcov.args,
condition = condition
)
if (.check_returned_se(se.pred)) {
se.fit <- se.pred$se.fit
fitfram <- se.pred$prediction_data
# calculate CI
fitfram$conf.low <- fitfram$predicted - stats::qnorm(ci) * se.fit
fitfram$conf.high <- fitfram$predicted + stats::qnorm(ci) * se.fit
# copy standard errors
attr(fitfram, "std.error") <- se.fit
attr(fitfram, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# No CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
} else {
# No CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
# for glmmPQL, we need to back-transform using link-inverse
if (inherits(model, "glmmPQL")) {
fitfram$predicted <- linv(fitfram$predicted)
fitfram$conf.low <- linv(fitfram$conf.low)
fitfram$conf.high <- linv(fitfram$conf.high)
}
fitfram
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.