get_predictions_merMod <- function(model, fitfram, ci.lvl, linv, type, terms, value_adjustment, condition, ...) {
# does user want standard errors?
se <- !is.null(ci.lvl) && !is.na(ci.lvl)
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- .975
# check whether predictions should be conditioned
# on random effects (grouping level) or not.
if (type == "fe")
ref <- NA
else
ref <- NULL
if (type %in% c("sim", "sim_re")) {
# simulate predictions
fitfram <- .do_simulate(model, terms, ci, type, ...)
} else {
fitfram$predicted <- suppressWarnings(stats::predict(
model,
newdata = fitfram,
type = "response",
re.form = ref,
allow.new.levels = TRUE,
...
))
if (se) {
# get standard errors from variance-covariance matrix
se.pred <-
.standard_error_predictions(
model = model,
prediction_data = fitfram,
value_adjustment = value_adjustment,
terms = terms,
type = type,
condition = condition
)
if (.check_returned_se(se.pred)) {
se.fit <- se.pred$se.fit
fitfram <- se.pred$prediction_data
if (is.null(linv)) {
# calculate CI for linear mixed models
fitfram$conf.low <- fitfram$predicted - stats::qnorm(ci) * se.fit
fitfram$conf.high <- fitfram$predicted + stats::qnorm(ci) * se.fit
} else {
# get link-function and back-transform fitted values
# to original scale, so we compute proper CI
lf <- insight::link_function(model)
# calculate CI for glmm
fitfram$conf.low <- linv(lf(fitfram$predicted) - stats::qnorm(ci) * se.fit)
fitfram$conf.high <- linv(lf(fitfram$predicted) + stats::qnorm(ci) * se.fit)
}
# copy standard errors
attr(fitfram, "std.error") <- se.fit
attr(fitfram, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
} else {
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
}
fitfram
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.