Description Usage Arguments Value Author(s) References Examples
View source: R/camt.cor.func.R
The function implements a scalable, flexible, robust and powerful FWER control method for large-scale multiple testing exploiting the auxiliary covariates. It allows both the prior null probability to depend on covariates.
1 2 3 4 5 6 7 8 9 10 11 12 |
pvals |
a numeric vector of p-values. |
pi0.var |
a formula, a vector, a data frame, or a matrix of covariate values for the prior null probability. |
data |
a data frame containing the covariates, only used when pi0.var are classes of 'formula'. |
pvals.cutoff |
a numeric value to replace p-values below that value, which is used to increase the stability of the algorithm. |
alpha |
a numeric value for the significance level. Default is 0.1. |
k.fix |
a numeric value between 0 and 1. It is the k parameter of the alternative (beta) distribution. If it is null, it will be estimated via EM. |
EM.paras |
a list of control arguments for the EM algorithm
|
trace |
a logical value indicating whether to print the process. |
return.model.matrix |
a logical value indicating whether to return the model matrix. Consider setting to FALSE if it's huge. |
A list with the elements
call |
the call made. |
pi0 |
a vector of the estimated null probabilities. |
k |
the (estimated) value for the k parameter of the alternative distribution. |
pi0.coef |
a vector of the coefficients for pi0. |
gamma |
the estimated gamma value to dichotomize the p-values |
loglik |
log likelihood. |
EM.paras |
actually used parameters in EM algorithm. |
EM.iter |
the number of iteration actually used. |
rejection |
a vector containing the indices of the rejected hypotheses. |
Huijuan Zhou
Huijuan Zhou, Xianyang Zhang, Jun Chen. Covariate Adaptive Family-wise Error Control with Applications to Genome-wide Association Studies. Submitted.
1 2 3 4 5 | data <- simulate.data(feature.no = 10000, covariate.strength = 'Moderate', covariate.model = 'pi0',
sig.density = 'Medium', sig.strength = 'L4', cor.struct = 'None')
camt.obj.fwer <- camt.fwer(pvals = data$pvals, pi0.var = data$pi0.var)
plot.camt.fwer(camt.obj.fwer, covariate = as.vector(rank(data$pi0.var)), covariate.name = 'Covariate rank',
log = TRUE, file.name = 'CovariateModerate.pdf')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.