Description Usage Arguments Value Author(s) References Examples
The function simulates p-values and covariates under different signal structures (density and strength) and covariate models. It also allows special correlation structures among the p-values.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## S3 method for class 'data'
simulate(
paras.mapping = paras.mapping.func(),
covariate.strength = c("None", "Moderate", "Strong"),
covariate.model = c("pi0", "f1", "both"),
covariate.dist = c("Normal", "Uniform", "T"),
null.model = c("Unif", "Left", "Right"),
skewness = 0.15,
f1.sd = 1,
feature.no = 10000,
sig.dist = c("Normal", "Gamma"),
sig.density = c("Low", "Medium", "High"),
sig.strength = c("L1", "L2", "L3", "L4", "L5", "L6", "L7", "L8"),
cor.struct = c("None", "Block", "AR1"),
cor.rho = 0,
cor.sign = c("PosCor", "PosNegCor"),
cor.nblock = 500
)
|
paras.mapping |
a list with slots |
covariate.strength |
a character string from |
covariate.model |
a character string from |
covariate.dist |
a character string from |
null.model |
a character string from |
skewness |
a numeric value indicating the skewness of the p-value distribution under the null (mean of the z-value) |
f1.sd |
a numeric value indicating the variance of the z-score under the alternative. Default is 1. |
feature.no |
an integar, the number of features to be simulated. |
sig.dist |
a character string from |
sig.density |
a character string from |
sig.strength |
a character string from |
cor.struct |
a character string from |
cor.rho |
a numeric value giving the correlation coefficient for |
cor.sign |
a character string from |
cor.nblock |
an integar, the number of blocks to be simulated for block correlation structure |
A list with the elements
pvals |
a numeric vector of p-values. |
pi0.var |
a vector of covariate values for the prior null probability. |
f1.var |
a vector of covariate values for the alternative distribution. |
pi0 |
a vector of the simulated null probabilities. |
truth |
a vector simulated truth for H0 (=0) or H1 (=1). |
lfdr |
a vector of oracle LFDR based on the simulated pi0, f1. |
fdr |
a vector of oracle FDR based on LFDR. |
Jun Chen
Xianyang Zhang, Jun Chen. Covariate Adaptive False Discovery Rate Control with Applications to Omics-Wide Multiple Testing. JASA. To appear.
1 2 3 4 5 6 | data <- simulate.data(feature.no = 10000, covariate.strength = 'Moderate', covariate.model = 'pi0',
sig.density = 'Medium', sig.strength = 'L3', cor.struct = 'None')
camt.fdr.obj <- camt.fdr(pvals = data$pvals, pi0.var = data$pi0.var, f1.var = data$f1.var,
alg.type = 'EM', control.method = 'knockoff+')
plot.camt.fdr(camt.fdr.obj, covariate = as.vector(rank(data$pi0.var)), covariate.name = 'Covariate rank',
log = TRUE, file.name = 'CovariateModerate.pdf')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.