#' Retrieve a list of vacant buildings due for inspection
#'
#' \code{get_VacantBuildings} returns a data.frame containing all registered vacant buildings
#' due for inspection geocoded (if specified) and filtered for the selected geography
#' (if specified).
#'
#' Refer to the data dictionary for variable descriptions:
#' \url{https://data.milwaukee.gov/dataset/accelavacantbuilding}
#'
#' @param start_date must be coercible to date format
#' @param end_date must be coercible to date format
#' @param spatial Logical. If TRUE the output is class sf. Defaults to FALSE.
#' @param shape An object of class sf. If included, the output will be filtered using
#' st_intersection
#' @param include_missing Logical. If TRUE values not geocoded will be added to the output.
#' Defaults to FALSE.
#' @return A dataframe.
#' @export
#' @import dplyr
#' @import sf
#' @importFrom ckanr resource_show
#' @importFrom ckanr ckan_fetch
#' @importFrom ckanr ckanr_setup
#'
#' @examples
#' get_VacantBuildings()
#' get_VacantBuildings(spatial = TRUE)
#'
# Get vacant buildings data
get_VacantBuildings <- function(start_date = NULL, end_date = NULL,
spatial = FALSE, shape, include_missing = FALSE) {
ckanr_setup(url = "https://data.milwaukee.gov")
res <- resource_show(id = "46dca88b-fec0-48f1-bda6-7296249ea61f", as = "table")
start <- Sys.time()
raw <- ckan_fetch(res$url)
end <- Sys.time()
fetchTime <- difftime(end, start, units = "secs")
print(paste("Download time:", round(fetchTime, 2), "seconds."))
raw <- raw %>%
mutate(DATEOPENED = stringr::word(DATEOPENED, 1, 1),
PARCELNBR = stringr::str_pad(PARCELNBR, width = 10, side = "left", pad = "0"),
RECORDID = as.character(RECORDID),
RECORDTYPE = as.character(RECORDTYPE),
STATUS = as.character(STATUS),
ADDRFULLLINE = as.character(ADDRFULLLINE),
BOOK = as.character(BOOK),
PARCELNBR = as.character(PARCELNBR),
VALUEIMPROVED = as.numeric(as.character(VALUEIMPROVED)))
date.filtered <- raw %>%
filter(as.Date(DATEOPENED) >= as.Date(start_date),
as.Date(DATEOPENED) <= as.Date(end_date))
d.final <- date.filtered
# spatial analysis
if(!missing(shape) | spatial == TRUE){
list.spatial <- list()
date.filtered$uniqueID <- 1:nrow(date.filtered)
d.mai <- milwaukeer::mai[,c("TAXKEY", "x", "y")] %>%
mutate(TAXKEY = as.character(TAXKEY))
spatial1 <- inner_join(date.filtered, d.mai,
by = c("PARCELNBR" = "TAXKEY")) %>%
group_by(uniqueID) %>%
filter(row_number() == 1) %>%
ungroup() %>%
select(-uniqueID) %>%
mutate(x = as.numeric(x),
y = as.numeric(y))
list.spatial[[1]] <- spatial1
# try geocoder
if(nrow(spatial1) < nrow(date.filtered)){
spatial2 <- anti_join(date.filtered, spatial1) %>%
tidyr::separate(col = "ADDRFULLLINE", sep = ",", into = c("address","drop"),
remove = FALSE) %>%
geocode_address(fields = "address") %>%
select(-address, -drop) %>%
mutate(x = as.numeric(x),
y = as.numeric(y))
d.missing <- spatial2[is.na(spatial2$x),]
list.spatial[[2]] <- spatial2[!is.na(spatial2$x),]
}
d.spatial <- bind_rows(list.spatial) %>%
select(-uniqueID) %>%
sf::st_as_sf(coords = c("x", "y"),
crs = 32054)
print(paste(nrow(date.filtered) - nrow(d.spatial), "cases unable to be geocoded.",
"Use include_missing = TRUE to include them in output."))
if(!missing(shape)){
d.spatial <- d.spatial %>%
st_transform(crs = st_crs(shape)) %>%
st_intersection(shape)
}
if(spatial == FALSE){
d.spatial <- sf::st_set_geometry(d.spatial, NULL)
}
if(include_missing == TRUE & nrow(d.spatial) < nrow(date.filtered)){
d.spatial <- bind_rows(d.spatial, d.missing)
}
d.final <- d.spatial
}
# output
d.final
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.