#' Retrieve the Wisconsin Incident Based Report (WIBR) dataset
#'
#' \code{get_wibrs} returns a data.frame containing the complete WIBRS crime data
#' for the requested time period (if specified) and the selected geography
#' (if specified).
#'
#' Refer to the data dictionary for variable descriptions:
#' \url{https://data.milwaukee.gov/dataset/wibr}
#'
#' @param start_date The first date to be included. Must be coercible to class Date.
#' Defaults to first date available.
#' @param end_date The last date to be included. Must be coercible to class Date.
#' Defaults to last date available.
#' @param spatial Logical. If TRUE the output is class sf. Defaults to FALSE.
#' @param shape An object of class sf. If included, the output will be filtered using
#' st_intersection
#' @param include_missing Logical. If TRUE values not geocoded will be added to the output. Defaults to FALSE.
#' @return A dataframe.
#' @export
#' @import dplyr
#' @import sf
#' @importFrom ckanr resource_show
#' @importFrom ckanr ckan_fetch
#' @importFrom ckanr ckanr_setup
#'
#' @examples
#' get_wibrs()
#' get_wibrs(start_date = as.Date("2018-01-01"), end_date = as.Date("2018-02-01"))
# Get WIBRS crime data
get_wibrs <- function(start_date= NULL, end_date = NULL,
spatial = FALSE, shape = NULL, include_missing = FALSE) {
# Set default dates
if(is.null(start_date)){
start_date = as.Date("2005-01-01")
}
if(is.null(end_date)){
end_date = as.Date(Sys.Date())
}
ckanr_setup(url = "https://data.milwaukee.gov")
res <- resource_show(id = "87843297-a6fa-46d4-ba5d-cb342fb2d3bb", as = "table")
start <- Sys.time()
raw <- ckan_fetch(res$url)
end <- Sys.time()
fetchTime <- difftime(end, start, units = "secs")
print(paste("Download time:", round(fetchTime, 2), "seconds."))
# Add date field
raw <- raw %>%
mutate(ReportedDate = stringr::str_sub(ReportedDateTime, 1, 10))
# Filter by start and end dates
date.filtered <- raw %>%
filter(ReportedDate >= as.Date(start_date),
ReportedDate <= as.Date(end_date)) %>%
mutate(address_match = stringr::str_to_upper(Location),
address_match = stringr::str_replace(address_match, "MILWAUKEE, WISCONSIN", "MILWAUKEE, WI"),
address_match = stringr::str_remove_all(address_match, ","),
# address_match = word(address_match, 1, -2),
address_match = stringr::str_remove_all(address_match, "#"),
address_match = stringr::str_remove(address_match, "MILWAUKEE WI"),
address_match = stringr::str_squish(address_match),
address_match = stringr::str_replace(address_match, " ST ST", " ST"))
# join to MAI
mai <- milwaukeer::mai %>%
mutate(address_all = paste(HSE_NBR, DIR, STREET, STTYPE, SFX, UNIT_NBR),
address_all = stringr::str_replace_all(address_all, " NA ", " "),
address_all = replace(address_all, stringr::str_sub(address_all, -3) == " NA",
stringr::str_sub(address_all[stringr::str_sub(address_all, -3) == " NA"], 1, -4)),
address_all = stringr::str_to_upper(address_all),
address_all = stringr::str_squish(address_all),
address_all = replace(address_all, !is.na(other_address), other_address[!is.na(other_address)]),
address_NoSTTYPE = paste(HSE_NBR, DIR, STREET),
address_NoSTTYPE = stringr::str_replace_all(address_NoSTTYPE, " NA ", " "),
address_NoSTTYPE = replace(address_NoSTTYPE, stringr::str_sub(address_NoSTTYPE, -3) == " NA",
stringr::str_sub(address_NoSTTYPE[stringr::str_sub(address_NoSTTYPE, -3) == " NA"], 1, -4)),
address_NoSTTYPE = stringr::str_to_upper(address_NoSTTYPE),
address_NoSTTYPE = stringr::str_squish(address_NoSTTYPE))
# Join simple addresses
has.address <- date.filtered[date.filtered$address_match != "",]
no.address <- date.filtered[date.filtered$address_match == "",]
join.list <- list()
join1 <- inner_join(has.address, mai[,c("address_all","x","y")],
by = c("address_match" = "address_all"))
missing <- anti_join(has.address, join1)
join.list[[(length(join.list) + 1)]] <- join1
# Join, trying MAI addresses without street type
if(nrow(missing) > 0){
join2 <- inner_join(missing, mai[,c("address_NoSTTYPE", "x", "y")],
by = c("address_match" = "address_NoSTTYPE"))
missing <- anti_join(missing, join2)
join.list[[(length(join.list) + 1)]] <- join2
if(nrow(missing) > 0){
# Join, source addresses with no street type
missing$address_NoSTTYPE <- remove_STTYPE(missing)
join3 <- inner_join(missing, mai[,c("address_NoSTTYPE", "x", "y")]) %>%
group_by(IncidentNum) %>%
filter(row_number() == 1)
missing <- anti_join(missing, join3)
join.list[[(length(join.list) + 1)]] <- join3
}
}
# try coordinates
try.coords <- bind_rows(no.address, missing)
has.coords <- try.coords %>%
filter(!is.na(RoughX),
!is.na(RoughY)) %>%
rename(x = RoughX, y = RoughY)
join.list[[(length(join.list) + 1)]] <- has.coords
all.joined <- bind_rows(join.list)
d <- all.joined
# Make data.frame of missing coordinates if include_missing = T
if(include_missing == TRUE){
missing.coords <- try.coords %>%
filter(!is.na(RoughX),
!is.na(RoughY))
}
# If spatial is TRUE, then convert to SF
if(!is.null(shape) | spatial == TRUE){
d <- d %>%
sf::st_as_sf(coords = c("x", "y"),
crs = 32054)
# If shape is specified, perform intersection with it
if(!is.null(shape)){
d <- d %>%
st_transform(crs = st_crs(shape)) %>%
st_intersection(shape)
}
print(paste(length(date.filtered$IncidentNum[is.na(date.filtered$RoughX)]), "out of",
length(date.filtered$IncidentNum),
"incidents not assigned coordinates. Use include_missing = TRUE to view them"))
}
if(!is.null(shape) & spatial == FALSE){
d <- st_set_geometry(d, NULL)
}
complete <- d
# If include_missing was specified, then add missing values back in
if(include_missing == TRUE){
complete <- bind_rows(d, missing.coords)
}
complete
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.