softImpute: softImpute

Description Usage Arguments Value

View source: R/FastLORS_Functions.R

Description

softImpute is a function from Mazudmer et al. (2010). It solves the problem min || X - Z ||_Omega + alpha || Z ||_Nulear and is used in parameter tuning for LORS. Note: This function is adapted from the LORS MATLAB implementation

Usage

1
softImpute(X, Z, Omega0, Omega1, Omega2, alpha0, maxRank)

Arguments

X

a (possibly) incomplete matrix

Z

the target matrix

Omega0

Boolean matrix of observed entries

Omega1

Boolean matrix of training entries

Omega2

Boolean matrix of validation entries

alpha0

initial tuning parameter

maxRank

maximum rank of the solution

Value

Z

Estimate of the target matrix

Err

Squared Error of the difference between X and Z on the validation set

rank_alpha

The rank of the estimates

znorm

The sum of the soft-thresholded singular values of the estimates

Alpha

The tuning parameters used


jdrhyne2/FastLORS documentation built on March 5, 2020, 6:50 a.m.