Description Usage Arguments Value Examples
View source: R/FastLORS_Functions.R
Run_LORS
is a function used to run either FastLORS or LORS
1 2 3 |
Y |
gene expression matrix |
X |
matrix of SNPs |
method |
chooses with modeling method to run |
screening |
Either "LORS-Screening", "HC-Screening", or "None". The default method, LORS-Screening, is recommended if the number of SNPs is large. HC-Screening of Rhyne et al. (2018) is under development but is included here as an option. |
tune_method |
chooses whether FastLORS should be used for parameter tuning or the original LORS procedure should be used. Default is FastLORS |
seed |
random seed to be used for setting training and validation set. Default is 123. |
maxiter |
maximum number of iterations |
eps |
constant used when checking the convergence. Ensures no division by 0. |
tol |
tolerance level for convergence |
cross_valid |
chooses whether cross-validation should be used in parameter tuning. Default is TRUE. |
omega_SOR |
the value of omega to use if applying successive over-relaxation with FastLORS. |
LORS_Obj or Fast_LORS_Obj |
A list produced from LORS or FastLORS containing (1) B: estimate of the coefficient matrix (2) L: estimate of the matrix of hidden factors (3) mu: estiamte of the vector of intercepts (4) f_val_vec: objective function values and (5) res_vec: relative change in objective function values |
selectedSNPs |
The SNPs selected by the screening method |
screening_time |
The time (in seconds) spent on screening step |
param_time |
The time (in seconds) spent on the parameter tuning step |
model_time |
The time (in seconds) spent on the joint modeling step |
total_time |
The time (in seconds) spent on the screening, parameter tuning, and joint modeling steps |
rho |
The value of rho chosen through parameter tuning |
lambda |
The value of lambda chosen through parameter tuning |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ##Example
## Generate some data
n <- 20
p <- 50
q <- 30
k <- 4
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))
activeSNPs <- sort(sample(c(1:nrow(B)), 20))
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))
B[activeSNPs[i], genes_influenced] <- 2
}
E <- matrix(rnorm(n*q),n,q)
Y <- X %*% B + L + E
## Usage
Run_LORS(Y, X, method = "FastLORS")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.