Description Usage Arguments Value Examples
View source: R/FastLORS_Functions.R
Fast_LORS
is a function for solving the LORS optimization problem in Can Yang et al. (2013) through the proximal gradient method
1 2 |
Y |
gene expression matrix |
X |
matrix of SNPs |
rho |
parameter for enforcing sparsity of coefficient matrix |
lambda |
parameter for enforcing low-rank structure of hidden factor matrix |
maxiter |
maximum number of iterations |
eps |
constant used when checking the convergence. Ensures no division by 0. |
tol |
tolerance level for convergence |
verbose |
chooses whether details should be printed to console. Default is FALSE. |
omega_SOR |
the value of omega to use if applying successive over-relaxation with FastLORS. |
B |
The estimated coefficients |
mu |
The estimated intercept |
L |
The estimated matrix of hidden factors |
f_val_vec |
The objective function values |
res_vec |
The relative change in objective function values |
iter |
The number of iterations |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ##Example
## Generate some data
n <- 50
p <- 200
q <- 100
k <- 10
set.seed(123)
X <- matrix(rbinom(n*p,1,0.5),n,p)
L <- matrix(rnorm(n*k),n,k) %*% t(matrix(rnorm(q*k),q,k))
B <- matrix(0, ncol(X), ncol(L))
activeSNPs <- sort(sample(c(1:nrow(B)), 20))
for(i in 1:length(activeSNPs)){
genes_influenced <- sort(sample(c(1:ncol(B)),5))
B[activeSNPs[i], genes_influenced] <- 2
}
E <- matrix(rnorm(n*q),n,q)
Y <- X %*% B + L + E
rho <- runif(1,3,5)
lambda <- runif(1,3,5)
## Usage
Fast_LORS(Y, X, rho, lambda)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.