Description Usage Arguments Details Value Examples
integrated_data
defines a data object with custom likelihood based on
a process model defined with integrated_process
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | add_data(data, process, likelihood, bias = no_bias(),
settings = list(), predictors = NULL)
age_abundance(distribution = poisson)
stage_abundance(distribution = poisson)
age_cjs(distribution = binomial)
stage_cjs(distribution = binomial)
stage_to_age(distribution = multinomial)
age_to_stage(distribution = multinomial)
occupancy(classes, density = no_density(), priors = list())
abundance(distribution = poisson)
community(distribution = bernoulli)
is.integrated_data(object)
## S3 method for class 'integrated_data'
print(x, ...)
## S3 method for class 'integrated_data'
summary(object, ...)
|
data |
a single data input (see details for descriptions of possible input types) |
process |
an integrated_process object |
likelihood |
something |
bias |
a bias function that connects observed and modelled data (see details) |
settings |
a named list of settings passed to data formatting functions (see details) |
predictors |
object of class integrated_predictor |
object |
an |
x |
an |
... |
additional arguments to print and summary methods (currently ignored) |
Do something. The settings list can be used to specify how the data are binned, either with
specific breaks for binning or with the number of breaks to use. If these are not provided, the
functions use the classes
element of process
to determine the number
of bins (nbreaks = classes + 1
).
An object of class integrated_data
, which contains information on the data module and
can be passed to integrated_model
1 2 3 4 5 6 7 8 9 10 11 12 13 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.