integrated_process: create integrated process objects

Description Usage Arguments Details Value Examples

Description

An integrated_process object contains the underlying process model for an integrated population analysis

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
leslie(classes, density = no_density(), priors = list(),
  masks = list())

lefkovitch(classes, density = no_density(), priors = list(),
  masks = list())

age(classes, density = no_density(), priors = list(), masks = list())

stage(classes, density = no_density(), priors = list(),
  masks = list())

unstructured(classes, density = no_density(), priors = list(),
  masks = list())

ipm(classes, density = no_density(), priors = list())

occupancy(classes, density = no_density(), priors = list())

is.integrated_process(object)

## S3 method for class 'integrated_process'
print(x, ...)

## S3 method for class 'integrated_process'
summary(object, ...)

## S3 method for class 'integrated_process'
plot(x, y, ...)

Arguments

classes

something

density

function of class integrated_density

priors

named list of prior distributions (see details for information on setting prior distributions)

masks

masking of matrices

object

an integrated_process object

x

an integrated_process object

...

additional arguments to print, summary, and plot methods (currently ignored)

Details

something. Prior distributions can be specified as single-dimensional greta distribution, e.g., normal(0, 1). Link functions and transformations can be specified directly in-line, e.g., ilogit(normal(0, 1)) specifies normal priors with a mean of zero and a standard deviation of one, transformed with an inverse-logit link.

Value

An object of class integrated_process, which can be used to create integrated_data and integrated_model objects

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
## Not run: 

library(integrated)

# a really basic age-structured model with five age classes
process <- leslie(5, density = ricker(lambda = uniform(0, 1)))

# setting custom priors
process <- leslie(5, density = bh(lambda = uniform(0, 1)),
                  priors = list(survival = ilogit(normal(0, 1)),
                                fecundity = exp(normal(0, 1))))

## End(Not run)

jdyen/greta.integrated documentation built on May 3, 2019, 8:04 p.m.