#'@importFrom stats smooth.spline predict
.qvalue <- function(p) {
smooth.df = 3
if (min(p) < 0 || max(p) > 1) {
print("ERROR: p-values not in valid range.")
return(0)
}
lambda = seq(0, 0.9, 0.05)
m <- length(p)
pi0 <- rep(0, length(lambda))
for (i in 1:length(lambda)) {
pi0[i] <- mean(p >= lambda[i])/(1 - lambda[i])
}
spi0 <- smooth.spline(lambda, pi0, df = smooth.df)
pi0 <- predict(spi0, x = max(lambda))$y
pi0 <- min(pi0, 1)
if (pi0 <= 0) {
print("ERROR: The estimated pi0 <= 0. Check that you have valid p-values.")
return(0)
}
u <- order(p)
qvalue.rank <- function(x) {
idx <- sort.list(x)
fc <- factor(x)
nl <- length(levels(fc))
bin <- as.integer(fc)
tbl <- tabulate(bin)
cs <- cumsum(tbl)
tbl <- rep(cs, tbl)
tbl[idx] <- tbl
return(tbl)
}
v <- qvalue.rank(p)
qvalue <- pi0 * m * p/v
qvalue[u[m]] <- min(qvalue[u[m]], 1)
for (i in (m - 1):1) {
qvalue[u[i]] <- min(qvalue[u[i]], qvalue[u[i + 1]],
1)
}
return(qvalue)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.