fitQTL | R Documentation |
Fit multiple QTL model
fitQTL(
data,
trait,
qtl,
epistasis = NULL,
polygenic = FALSE,
params = list(burnIn = 100, nIter = 5000),
CI.prob = 0.9
)
data |
variable of class |
trait |
name of trait |
qtl |
data frame, see Details |
epistasis |
optional data frame, see Details |
polygenic |
TRUE/FALSE whether to include additive polygenic effect |
params |
list containing the number of burn-in (burnIn) and total iterations (nIter) |
CI.prob |
probability for Bayesian credible interval |
Argument qtl
is a data frame with columns marker
and dominance
to specify the marker name and highest order effect (1 = additive, 2 = digenic dominance,
3 = trigenic dominance, 4 = quadrigenic dominance). All effects up to the value in dominance
are included. Optional argument epistasis
is a data frame with columns marker1
and
marker2
, where each row specifies an additive x additive epistatic interaction.
The number of burn-in and total iterations in params
can be estimated using
set_params
. Parameter CI.prob
sets the probability (e.g., 0.90, 0.95)
for the Bayesian credible interval for the estimated effects (to disable plotting of the CI,
use CI.prob=NULL
).
List containing
DIC relative to model with GCA but no QTL effects
residuals
matrix with proportion of variance for the effects
list with two matrices, additive
and digenic
, with markers on the rows and effects on the columns
list of ggplot objects, one for each marker, containing elements additive
and digenic
. The digenic plot has digenic effects above the diagonal and the sum of additive and digenic effects below the diagonal.
## Not run:
## getting minimum burnIn and nIter for one qtl
set_params(data = diallel_example,
trait = "tuber_shape",
q = 0.05,
r = 0.025,
qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2),
polygenic = TRUE)
## additive effects
fit1 <- fitQTL(data = diallel_example,
trait = "tuber_shape",
params = list(burnIn=100,nIter=5000),
qtl = data.frame(marker="solcap_snp_c2_25522",dominance=1),
CI.prob = 0.9)
## additive + digenic dominance effects
fit2 <- fitQTL(data = diallel_example,
trait = "tuber_shape",
params = list(burnIn=100,nIter=5000),
qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2),
CI.prob=0.9)
## getting minimum burnIn and nIter for two qtl with epistasis
set_params(data = diallel_example,
trait = "tuber_shape",
q = 0.05,
r = 0.025,
qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"),
dominance=c(2,1)),
epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"),
polygenic = TRUE)
## additive + digenic dominance effects for both QTL
fit3 <- fitQTL(data = diallel_example, trait = "tuber_shape",
params = list(burnIn=100,nIter=5000),
qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"),
dominance=c(2,2)),
polygenic = TRUE, CI.prob = 0.9)
## additive + digenic dominance effects for both QTL + their epistatic effects
fit4 <- fitQTL(data = diallel_example, trait = "tuber_shape",
params = list(burnIn=100,nIter=5000),
qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"),
dominance=c(2,2)),
epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"),
polygenic = TRUE, CI.prob = 0.9)
## additive + digenic dominance effects for three QTL + all their epistatic effects
fit5 <- fitQTL(data = diallel_example, trait = "tuber_shape",
params = list(burnIn=100,nIter=5000),
qtl = data.frame(marker=c("PotVar0099535",
"solcap_snp_c1_6427",
"solcap_snp_c2_25522"),
dominance=c(2,2,2)),
epistasis = data.frame(marker1=c("solcap_snp_c2_25522",
"solcap_snp_c2_25522",
"PotVar0099535"),
marker2=c("PotVar0099535",
"solcap_snp_c1_6427",
"solcap_snp_c1_6427")),
polygenic = TRUE, CI.prob = 0.9)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.