set_params | R Documentation |
Determine number of iterations for MCMC
set_params(
data,
trait,
qtl = NULL,
epistasis = NULL,
polygenic = FALSE,
q = 0.5,
r = 0.1,
nIter = 2000
)
data |
variable of class |
trait |
name of trait |
qtl |
optional data frame, see Examples |
epistasis |
optional data frame, see Example |
polygenic |
TRUE/FALSE whether to include additive polygenic effect |
q |
quantile to estimate |
r |
tolerance for quantile |
nIter |
number of iterations |
Determines the burn-in and total number of iterations using the Raftery and Lewis diagnostic from
R package coda
, based on a 95% probability that the estimate for quantile q
of the
additive genetic variance is within the interval (q-r,q+r)
. If marker=NULL
(default),
the first marker of each chromosome is analyzed, and the largest value across this set is returned.
Parameter dominance
specifies which genetic model (1 = additive, 2 = digenic dominance,
3 = trigenic dominance, 4 = quadrigenic dominance) to use when determining the number of iterations,
but this parameter must still be specified when calling functions such as scan1
or
fitQTL
. The default values of q=0.5 and r=0.1 are recommended for scan1
based on the idea of estimating the posterior mean. For estimating the 90% Bayesian CI with
fitQTL
, suggested values are q=0.05, r=0.025. Parameter nIter
sets the
number of iterations used to apply the Raftery and Lewis diagnostic; the default value is 2000,
and if a larger number is needed, an error will be generated with this information.
matrix showing the number of burn-in and total iterations for the genetic variances in the model
## Not run:
# Parameters for scan1
par1 <- set_params(data = diallel_example,
trait = "tuber_shape",
q=0.5,
r=0.1)
# Parameters for fitQTL (specify the position)
set_params(data = diallel_example,
trait = "tuber_shape",
q=0.05,
r=0.025,
qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2))
# Parameters for fitQTL (specify the position) with polygenic effects
set_params(data = diallel_example,
trait = "tuber_shape",
q=0.05,
r=0.025,
qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2),
polygenic=TRUE)
# Parameters for fitQTL with 2 QTLs
set_params(data = diallel_example,
trait = "tuber_shape",
q=0.05,
r=0.025,
qtl=data.frame(marker=c("solcap_snp_c2_25522","solcap_snp_c2_14750"),dominance=c(2,1)))
# Parameters for fitQTL with epistasis
set_params(data = diallel_example,
trait = "tuber_shape",
q=0.05,
r=0.025,
epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="solcap_snp_c2_14750"),
qtl=data.frame(marker=c("solcap_snp_c2_25522","solcap_snp_c2_14750"),dominance=c(2,1)))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.