Description Usage Arguments Value See Also Examples
View source: R/calc_nb_counts.R
Calculate predicted value and standard error of a negative binomial regression model for each row in a design matrix.
1 | calc_nb_counts(nbObj, designMatrix, predVar = NULL, intVar = NULL)
|
nbObj |
Model fit of class glm.nb, or mice::mira object fit using glm.nb. |
designMatrix |
Matrix of covariate values. Number of columns = number of coefficients in nbObj. |
predVar |
Character string; name of main predictor variable. Defaults to NULL, in which case predictor variable values will not be included in resulting data.frame. |
intVar |
Character string (optional); name of interacting variable. Defaults to NULL. If included, nothing changes except this column in designMatrix will also be included in the returned data.frame. |
data.frame containing columns for main predictor variable; interacting variable (if given); linear predictor and its SE; adjusted count and its lower and upper confidence limits.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Create data frame
df <- data.frame(y = round(rexp(n = 100, rate = 0.5)),
v1 = sample(1:5, size = 100, replace = TRUE),
v2 = rnorm(n = 100))
## Fit negative binomial model
mymod <- MASS::glm.nb(y ~ v1 * v2, data = df)
## Create design matrix
mydmat <- matrix(c(rep(1, 5), 1:5, rep(median(df$v2), 5)), ncol = 3)
mydmat <- cbind(mydmat, mydmat[,2] * mydmat[,3])
colnames(mydmat) <- c('(Intercept)', 'v1', 'v2', 'v1:v2')
calc_nb_counts(mymod, designMatrix = mydmat, predVar = 'v1', intVar = 'v2')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.