Description Usage Arguments Details Value Methods (by class) See Also Examples
View source: R/calc_nb_ratioci.R
The most common way to express incidence rate ratios is simply exp(beta), representing a one-unit increase in the covariate value; however, in the case of continuous covariates, this is often not a practically meaningful difference (one year of age among adults, eg, or a one-unit change in mean arterial pressure). This function allows you to specify a clinically meaningful comparison in the case of continuous covariates, defaulting to the 75th vs the 25th percentiles of values in the data frame specified.
1 2 3 4 5 6 7 8 9 10 11 12 13 | calc_nb_ratioci(nbObj = NULL, ...)
## Default S3 method:
calc_nb_ratioci(nbObj = NULL, nbCoefs, nbVcov, predVar,
adjustTo = NULL, df, alpha = 0.05)
## S3 method for class 'mira'
calc_nb_ratioci(nbObj, predVar, adjustTo = NULL, df,
alpha = 0.05)
## S3 method for class 'negbin'
calc_nb_ratioci(nbObj, predVar, adjustTo = NULL, df,
alpha = 0.05)
|
nbObj |
Model fit of class glm.nb, or mice::mira object fit using glm.nb. |
nbCoefs |
Vector of coefficients from a glm.nb. |
nbVcov |
Variance-covariance matrix from a glm.nb fit. |
predVar |
Character string; name of main predictor variable. |
adjustTo |
Numeric vector of length 2; values to adjust predVar to if predVar is continuous. Defaults to c(25th, 75th percentiles). |
df |
Data frame used to determine type of predVar, get defaults for adjustTo and to calculate nonlinear terms if applicable. |
alpha |
Alpha level for confidence limits. Defaults to 0.05. |
Currently does not handle interaction terms.
matrix with one row per comparison, containing columns for point estimate, confidence limits, and reference and comparison levels used.
default
: Method used when passing coefficients and variance-covariance matrix,
vs original model fit
Default method uses given coefficients and variance-covariance matrix. Intended use cases include bootstrapped negative binomial models.
mira
: Method for glm.nb models fit with mice objects.
negbin
: Method for glm.nb models (no imputation).
glm.nb
; mice
, pool
;
rcspline.eval
for nonlinear terms.
glm.nb
; rcspline.eval
for nonlinear terms.
glm.nb
; mice
rcspline.eval
for nonlinear terms.
glm.nb
; rcspline.eval
for nonlinear terms.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | ## Create data frame
df <- data.frame(y = round(rexp(n = 100, rate = 0.5)),
v1 = sample(1:5, size = 100, replace = TRUE),
v2 = rnorm(n = 100))
## Fit negative binomial model
mymod <- MASS::glm.nb(y ~ v1 * v2, data = df)
calc_nb_ratioci(mymod, predVar = 'v1', df = df)
## Create data frame
df <- data.frame(y = round(rexp(n = 100, rate = 0.5)),
v1 = sample(1:5, size = 100, replace = TRUE),
v2 = rnorm(n = 100))
## Fit negative binomial model
mymod <- MASS::glm.nb(y ~ v1 * v2, data = df)
mycoefs <- coef(mymod)
myvcov <- vcov(mymod)
calc_nb_ratioci(nbCoefs = mycoefs, nbVcov = myvcov, predVar = 'v1', df = df)
## Create data frame
df <- data.frame(y = round(rexp(n = 100, rate = 0.5)),
v1 = sample(c(1:5, NA), size = 100, replace = TRUE),
v2 = rnorm(n = 100))
## Impute missing data using mice
mids.df <- mice(df)
## Fit negative binomial model
mymod <- with(mids.df, MASS::glm.nb(y ~ v1 * v2))
calc_nb_ratioci(mymod, predVar = 'v1', df = df)
## Create data frame
df <- data.frame(y = round(rexp(n = 100, rate = 0.5)),
v1 = sample(1:5, size = 100, replace = TRUE),
v2 = rnorm(n = 100))
## Fit negative binomial model
mymod <- MASS::glm.nb(y ~ v1 * v2, data = df)
calc_nb_ratioci(mymod, predVar = 'v1', df = df)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.