#' @rdname run_gibbsflow_sisr
#' @title Run Gibbs flow importance sampler with resampling
#' @param prior list with keys:
#' \code{logdensity} evaluates log prior density,
#' \code{gradlogdensity} returns its gradient,
#' \code{rinit} samples from the prior distribution
#' @param likelihood list with keys:
#' \code{logdensity} samples from proposal,
#' \code{gradlogdensity} returns its gradient
#' @param nparticles number of particles
#' @param timegrid vector describing numerical integration times
#' @param lambda vector describing tempering schedule
#' @param derivative_lambda time derivative of tempering schedule
#' @param compute_gibbsflow function computing Gibbs flow
#' @return list with keys:
#' \code{xtrajectory} trajectories,
#' \code{xparticles} particles at terminal time,
#' \code{ess} effective sample size,
#' \code{log_normconst} log normalizing constant,
#' @seealso \code{\link{run_gibbsflow_sis}} if no resampling is desired
#' @export
run_gibbsflow_sisr <- function(prior, likelihood, nparticles, timegrid, lambda, derivative_lambda, compute_gibbsflow){
# initialization
xparticles <- prior$rinit(nparticles)
previous_logdensity <- prior$logdensity(xparticles)
# pre-allocate
dimension <- ncol(xparticles)
nsteps <- length(lambda) # same length as timegrid
stepsize <- diff(timegrid)
# xtrajectory <- array(dim = c(nparticles, dimension, nsteps))
# xtrajectory[ , , 1] <- xparticles
logweights <- rep(0, nparticles)
ess <- rep(0, nsteps)
ess[1] <- nparticles
log_normconst <- rep(0, nsteps)
log_ratio_normconst <- 0
for (istep in 2:nsteps){
# gibbs flow move
output_flow <- compute_gibbsflow(stepsize[istep-1], lambda[istep-1], lambda[istep], derivative_lambda[istep-1],
xparticles, previous_logdensity)
xparticles <- output_flow$xparticles
log_jacobian_dets <- as.numeric(output_flow$log_jacobian_dets)
# weight
current_logdensity <- prior$logdensity(xparticles) + lambda[istep] * likelihood$logdensity(xparticles)
logweights <- current_logdensity - previous_logdensity + log_jacobian_dets
maxlogweights <- max(logweights)
weights <- exp(logweights - maxlogweights)
normweights <- weights / sum(weights)
# compute effective sample size
ess[istep] <- 1 / sum(normweights^2)
# compute normalizing constant
log_ratio_normconst <- log_ratio_normconst + log(mean(weights)) + maxlogweights
log_normconst[istep] <- log_ratio_normconst
# resample
ancestors <- systematic_resampling(normweights, nparticles, runif(1) / nparticles)
xparticles <- xparticles[ancestors, ]
previous_logdensity <- current_logdensity[ancestors]
# store trajectory
# xtrajectory[ , , istep] <- xparticles
}
return(list(xparticles = xparticles, ess = ess, log_normconst = log_normconst))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.