rm(list = ls())
library(UnbiasedScore)
library(tictoc)
file_path <- "inst/neuroscience_diffusion/results/"
file_sub_name <- 'increments_CPF'
file_name <- sprintf("%s%s.RData", file_path, file_sub_name)
# load dataset
load("~/Rlocal/neuroscience_diffusion/gridcells.RData")
terminal_time <- 20
spiketimes1 <- neuron1$ts[neuron1$ts < terminal_time]
spiketimes2 <- neuron2$ts[neuron2$ts < terminal_time]
# construct model
level_observation <- 6
model <- hmm_neuroscience_diffusion(spiketimes1, spiketimes2, level_observation, terminal_time)
# plot observation counts for a given discretization
counts <- model$compute_observations()
observations <- counts$observations
nobservations <- counts$nbins # same as time discretization
theta <- c(1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1)
# settings
nparticles <- 2^8
resampling_threshold <- 0.5 # adaptive resampling
coupled2_resampling <- coupled2_maximal_independent_residuals
coupled4_resampling <- coupled4_maximalchains_maximallevels_independent_residuals
algorithm <- "CPF"
levels <- 11:15
nrepeats <- 10
k = 135 # CPF
# k = 105 # CASPF
# preallocate
naive.df <- data.frame()
simple.df <- data.frame()
for (current_level in levels){
# construct discretization
discretization <- model$construct_successive_discretization(current_level)
for (i in 1:nrepeats){
i_global <- (igrid - 1) * nrepeats + i
cat("Level:", current_level, "Repetition:", i, "\n")
# compute unbiased increment using naive estimators
increment <- unbiased_score_increment(model, theta, discretization, observations, nparticles, resampling_threshold, coupled2_resampling, coupled4_resampling,
initialization = "dynamics", algorithm = algorithm, k = 0, m = 0, max_iterations = Inf)
stopping_time <- max(increment$meetingtime_coarse, increment$meetingtime_fine)
squarednorm <- sum(increment$unbiasedestimator^2)
naive.df <- rbind(naive.df, data.frame(level = factor(current_level),
repetition = i_global,
stoppingtime = stopping_time,
squarednorm = squarednorm,
theta1 = increment$unbiasedestimator[1],
theta2 = increment$unbiasedestimator[2],
theta3 = increment$unbiasedestimator[3],
theta4 = increment$unbiasedestimator[4],
theta5 = increment$unbiasedestimator[5],
theta6 = increment$unbiasedestimator[6],
theta7 = increment$unbiasedestimator[7],
theta8 = increment$unbiasedestimator[8],
theta9 = increment$unbiasedestimator[9],
theta10 = increment$unbiasedestimator[10],
theta11 = increment$unbiasedestimator[11],
theta12 = increment$unbiasedestimator[12]))
cat("Squared norm of naive estimator:", squarednorm, "Stopping time:", stopping_time, "\n")
# compute unbiased increment using simple estimators
increment <- unbiased_score_increment(model, theta, discretization, observations, nparticles, resampling_threshold, coupled2_resampling, coupled4_resampling,
initialization = "dynamics", algorithm = algorithm, k = k, m = k, max_iterations = Inf)
stopping_time <- max(increment$meetingtime_coarse, increment$meetingtime_fine)
squarednorm <- sum(increment$unbiasedestimator^2)
simple.df <- rbind(simple.df, data.frame(level = factor(current_level),
repetition = i_global,
stoppingtime = stopping_time,
squarednorm = squarednorm,
theta1 = increment$unbiasedestimator[1],
theta2 = increment$unbiasedestimator[2],
theta3 = increment$unbiasedestimator[3],
theta4 = increment$unbiasedestimator[4],
theta5 = increment$unbiasedestimator[5],
theta6 = increment$unbiasedestimator[6],
theta7 = increment$unbiasedestimator[7],
theta8 = increment$unbiasedestimator[8],
theta9 = increment$unbiasedestimator[9],
theta10 = increment$unbiasedestimator[10],
theta11 = increment$unbiasedestimator[11],
theta12 = increment$unbiasedestimator[12]))
cat("Squared norm of simple estimator:", squarednorm, "Stopping time:", stopping_time, "\n")
}
# save results
save.image(file = file_name)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.