#' @rdname maximal2_pcn_coupling
#' @title maximal coupling of 2 pCN proposals
#' @description Generate pCN proposals for two chains via maximal coupling
#' @param chain_state1 a vector with coordinates of the first particle
#' @param chain_state2 a vector with coordinates of the second particle
#' @param identical a flag that is True if chains are identical and False otherwise
#' @param tuning a list that contains parameters needed for pCN: standard devation and rho
#'@return a list that contains state of the first chain, state of the second chain, updated value of the flag "identical", cost of proposal generation
#'@export
maximal2_pcn_coupling <- function(chain_state1, chain_state2, identical, tuning){
cost = 0 # cost of proposal generation
# tuning parameters that define autoregressive proposal
proposal_sd <- tuning$proposal_sd
proposal_rho <- tuning$proposal_rho
proposal_sd_factor <- sqrt(1-proposal_rho^2) * proposal_sd
# sample first proposal
state1 <- proposal_rho * chain_state1 + proposal_sd_factor * rnorm(dimension)
# evaluate proposal transition densities at first proposal
pdf1 <- sum(dnorm(state1, mean = proposal_rho * chain_state1, sd = proposal_sd_factor, log = TRUE))
pdf2 <- sum(dnorm(state1, mean = proposal_rho * chain_state2, sd = proposal_sd_factor, log = TRUE))
logacceptprob <- min(pdf1, pdf2) - pdf1
if (log(runif(1)) < logacceptprob){
# return common proposal for both chains
return(list(state1 = state1, state2 = state1, identical = TRUE, cost = cost))
} else {
# rejection sampler for second proposal
reject <- TRUE
state2 <- NA
while (reject){
# sample proposed value
state2 <- proposal_rho * chain_state2 + proposal_sd_factor * rnorm(dimension)
# evaluate proposal transition densities at proposed value
pdf1 <- sum(dnorm(state2, mean = proposal_rho * chain_state1, sd = proposal_sd_factor, log = TRUE))
pdf2 <- sum(dnorm(state2, mean = proposal_rho * chain_state2, sd = proposal_sd_factor, log = TRUE))
logrejectprob <- min(pdf1, pdf2) - pdf2
# accept or reject
reject <- (log(runif(1)) < logrejectprob)
}
return(list(state1 = state1, state2 = state2, identical = FALSE, cost = cost))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.