#' Double Connection spatial scan test
#'
#' \code{dc.test} implements the Double Connection spatial
#' scan test of Costa et al. (2012). Starting with a single
#' region as a current zone, new candidate zones are
#' constructed by combining the current zone with the
#' connected region that maximizes the resulting likelihood
#' ratio test statistic, with the added constraint that the
#' region must have at least two connection (i.e., shares a
#' border with) at least two of the regoins in the current
#' zone. This procedure is repeated until adding a
#' connected region does not increase the test statistic (or
#' the population or distance upper bounds are reached).
#' The same procedure is repeated for each region. The
#' clusters returned are non-overlapping, ordered from most
#' significant to least significant. The first cluster is
#' the most likely to be a cluster. If no significant
#' clusters are found, then the most likely cluster is
#' returned (along with a warning).
#'
#' The maximum intercentroid distance can be found by
#' executing the command:
#' \code{gedist(as.matrix(coords), longlat = longlat)},
#' based on the specified values of \code{coords} and
#' \code{longlat}.
#'
#' @inheritParams dmst.test
#' @return Returns a \code{smerc_cluster} object.
#' @author Joshua French
#' @export
#' @seealso \code{\link{print.smerc_cluster}},
#' \code{\link{summary.smerc_cluster}},
#' \code{\link{plot.smerc_cluster}},
#' \code{\link{scan.stat}}, \code{\link{scan.test}}
#' @references Costa, M.A. and Assuncao, R.M. and Kulldorff,
#' M. (2012) Constrained spanning tree algorithms for
#' irregularly-shaped spatial clustering, Computational
#' Statistics & Data Analysis, 56(6), 1771-1783.
#' <doi:10.1016/j.csda.2011.11.001>
#' @examples
#' data(nydf)
#' data(nyw)
#' coords <- with(nydf, cbind(longitude, latitude))
#' out <- dc.test(
#' coords = coords, cases = floor(nydf$cases),
#' pop = nydf$population, w = nyw,
#' alpha = 0.12, longlat = TRUE,
#' nsim = 5, ubpop = 0.1, ubd = 0.2
#' )
#' # better plotting
#' if (require("sf", quietly = TRUE)) {
#' data(nysf)
#' plot(st_geometry(nysf), col = color.clusters(out))
#' }
dc.test <- function(coords, cases, pop, w,
ex = sum(cases) / sum(pop) * pop,
nsim = 499, alpha = 0.1,
ubpop = 0.5, ubd = 1,
longlat = FALSE, cl = NULL) {
# sanity checking
arg_check_scan_test(
coords = coords, cases = cases,
pop = pop, ex = ex, nsim = nsim,
alpha = alpha,
ubpop = ubpop, longlat = longlat,
k = 1, w = w
)
coords <- as.matrix(coords) # ensure proper format
N <- nrow(coords) # number of regions
ty <- sum(cases) # sum of all cases
# intercentroid distances
d <- gedist(as.matrix(coords), longlat = TRUE)
# upperbound for zone populations
max_pop <- ubpop * sum(pop)
# find all neighbors from each starting zone within distance upperbound
nn <- nndist(d, ubd)
all_zones <- mst.all(nn,
cases = cases, pop = pop, w = w,
ex = ex, ty = ty, max_pop = max_pop,
type = "all", nlinks = "two", early = TRUE,
cl = cl, progress = FALSE
)
# extract relevant information
nn2 <- lapply(all_zones, getElement, name = "locids")
tobs <- unlist(lapply(all_zones, getElement, name = "loglikrat"),
use.names = FALSE
)
# determine distinct zones
wdup <- nndup(nn2, N)
# remove zones with a test statistic of 0 or don't have
# min number of cases or are duplicted
w0 <- which(tobs == 0 | wdup)
# determine zones
zones <- nn2zones(nn2)
# remove zones with a test statistic of 0
zones <- zones[-w0]
tobs <- tobs[-w0]
# compute test statistics for simulated data
if (nsim > 0) {
message("computing statistics for simulated data:")
tsim <- dc.sim(
nsim = nsim, nn = nn, ty = ty,
ex = ex, w = w, pop = pop,
max_pop = max_pop, cl = cl
)
pvalue <- mc.pvalue(tobs, tsim)
} else {
pvalue <- rep(1, length(tobs))
}
# significant, ordered, non-overlapping clusters and
# information
pruned <- sig_noc(
tobs = tobs, zones = zones,
pvalue = pvalue, alpha = alpha,
order_by = "tobs"
)
smerc_cluster(
tobs = pruned$tobs, zones = pruned$zones,
pvalue = pruned$pvalue, coords = coords,
cases = cases, pop = pop, ex = ex,
longlat = longlat, method = "double connection",
rel_param = list(
type = "poisson",
simdist = "multinomial",
nsim = nsim,
ubpop = ubpop,
ubd = ubd
),
alpha = alpha,
w = w, d = NULL
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.