R/flex.test.R

Defines functions flex.test

Documented in flex.test

#' Flexibly-shaped Spatial Scan Test
#'
#' \code{flex.test} performs the flexibly-shaped scan test
#' of Tango and Takahashi (2005).
#'
#' The test is performed using the spatial scan test based
#' on the Poisson test statistic and a fixed number of
#' cases.  The first cluster is the most likely to be a
#' cluster.  If no significant clusters are found, then the
#' most likely cluster is returned (along with a warning).
#'
#' @inheritParams rflex.test
#' @param lonlat Deprecated in favor of \code{longlat}.
#' @param ... Not used.
#'
#' @return Returns a list of length two of class scan. The
#'   first element (clusters) is a list containing the
#'   significant, non-ovlappering clusters, and has the the
#'   following components:
#' @author Joshua French
#' @export
#' @seealso \code{\link{print.smerc_cluster}},
#' \code{\link{summary.smerc_cluster}},
#' \code{\link{plot.smerc_cluster}},
#' \code{\link{scan.stat}}, \code{\link{scan.test}}
#' @references Tango, T., & Takahashi, K. (2005). A flexibly
#'   shaped spatial scan statistic for detecting clusters.
#'   International journal of health geographics, 4(1), 11.
#'   Kulldorff, M. (1997) A spatial scan statistic.
#'   Communications in Statistics -- Theory and Methods 26,
#'   1481-1496.
#' @examples
#' data(nydf)
#' data(nyw)
#' coords <- with(nydf, cbind(longitude, latitude))
#' out <- flex.test(
#'   coords = coords, cases = floor(nydf$cases),
#'   w = nyw, k = 3,
#'   pop = nydf$pop, nsim = 49,
#'   alpha = 0.12, longlat = TRUE
#' )
#'
#' # better plotting
#' if (require("sf", quietly = TRUE)) {
#'    data(nysf)
#'    plot(st_geometry(nysf), col = color.clusters(out))
#' }
flex.test <- function(coords, cases, pop, w, k = 10,
                      ex = sum(cases) / sum(pop) * pop,
                      type = "poisson", nsim = 499,
                      alpha = 0.1, longlat = FALSE,
                      cl = NULL,
                      lonlat = longlat, ...) {
  if (!identical(lonlat, longlat)) {
    longlat <- lonlat
    warning("lonlat is deprecated. Please use longlat.")
  }
  arg_check_scan_test(coords, cases, pop, ex, nsim, alpha,
    nsim + 1, 0.5, longlat, FALSE,
    k = k,
    w = w, type = type
  )

  coords <- as.matrix(coords)

  zones <- flex.zones(coords, w, k, longlat)

  # compute needed information
  ty <- sum(cases)
  yin <- zones.sum(zones, cases)

  # compute test statistics for observed data
  if (type == "poisson") {
    ein <- zones.sum(zones, ex)
    eout <- ty - ein
    popin <- NULL
    popout <- NULL
    tpop <- NULL
    tobs <- stat.poisson(yin, ty - yin, ein, eout)
  } else if (type == "binomial") {
    ein <- NULL
    eout <- NULL
    tpop <- sum(pop)
    popin <- zones.sum(zones, pop)
    popout <- tpop - popin
    tobs <- stat.binom(yin, ty - yin, ty, popin, popout, tpop)
  }

  # compute test statistics for simulated data
  if (nsim > 1) {
    message("computing statistics for simulated data:")
    tsim <- flex.sim(
      nsim = nsim, zones = zones, ty = ty,
      ex = ex,
      type = type, ein = ein, eout = eout,
      popin = popin, popout = popout, tpop = tpop,
      cl = cl
    )
    pvalue <- mc.pvalue(tobs, tsim)
  } else {
    pvalue <- rep(1, length(tobs))
  }

  # significant, ordered, non-overlapping clusters and
  # information
  pruned <- sig_noc(
    tobs = tobs, zones = zones,
    pvalue = pvalue, alpha = alpha,
    order_by = "tobs"
  )

  smerc_cluster(
    tobs = pruned$tobs, zones = pruned$zones,
    pvalue = pruned$pvalue, coords = coords,
    cases = cases, pop = pop, ex = ex,
    longlat = longlat, method = "flexible",
    rel_param = list(
      type = type,
      simdist = "multinomial",
      nsim = nsim,
      k = k
    ),
    alpha = alpha,
    w = w, d = NULL
  )
}
jfrench/smerc documentation built on Oct. 27, 2024, 5:13 p.m.