#' Determine zones for flexibly shaped spatial scan test
#'
#' \code{flex_zones} determines the unique zones to consider
#' for the flexibly shaped spatial scan test of Tango and
#' Takahashi (2005). The algorithm uses a breadth-first
#' search to find all subgraphs connected to each vertex
#' (region) in the data set of size \eqn{k} or less.
#'
#' @param cl Ignored, but retained for backwards compatibility
#' @inheritParams flex.test
#' @inheritParams rflex.zones
#' @return Returns a list of zones to consider for
#' clustering. Each element of the list contains a vector
#' with the location ids of the regions in that zone.
#' @author Joshua French
#' @export
#' @references Tango, T., & Takahashi, K. (2005). A flexibly
#' shaped spatial scan statistic for detecting clusters.
#' International journal of health geographics, 4(1), 11.
#' @examples
#' data(nydf)
#' data(nyw)
#' coords <- cbind(nydf$x, nydf$y)
#' zones <- flex_zones(coords, w = nyw, k = 3)
#' \dontrun{
#' # see what happens when verbose = TRUE
#' zones <- flex_zones(coords, w = nyw, k = 3, verbose = TRUE)
#' }
flex_zones <- function(coords, w, k = 10, longlat = FALSE,
cl = NULL, loop = FALSE,
verbose = FALSE, pfreq = 1) {
nn <- knn(coords = coords, longlat = longlat, k = k)
N <- nrow(coords)
idx <- seq_along(nn)
lprimes <- log(primes100k[seq_len(N)])
if (!loop) {
# get list of list of logical vectors
czones <- scsg2_cpp(nn, w, idx = idx, nlevel = k, lprimes = lprimes, verbose = verbose)
# convert to zone indices
czones <- logical2zones(czones, nn, idx)
# return distinct zones
return(czones[distinct(czones)])
} else {
czones <- list()
pri <- primes100k[seq_len(N)]
czones_id <- numeric(0) # unique identifier of each zone
for (i in seq_len(N)) {
if (verbose) {
if ((i %% pfreq) == 0) {
message(
i, "/", N, ". Starting region ", i,
" at ", Sys.time(), "."
)
}
}
# logical vector zones for idxi
izones <- scsg2_cpp(nn, w, i, k, lprimes, verbose = FALSE)
# convert to region ids
izones <- logical2zones(izones, nn, idx = i)
# determine unique ids for izones
izones_id <- sapply(izones, function(xi) sum(lprimes[xi]))
# determine if some izones are duplicated with czones
# remove duplicates and then combine with czones
dup_id <- which(izones_id %in% czones_id)
if (length(dup_id) > 0) {
czones <- combine.zones(czones, izones[-dup_id])
czones_id <- c(czones_id, izones_id[-dup_id])
} else {
czones <- combine.zones(czones, izones)
czones_id <- c(czones_id, izones_id)
}
}
return(czones)
}
}
#' Convert logical vector to zone
#'
#' @param czones List of list of logical vectors
#' @param nn List of nearest neighbor indices
#' @param idx Relevant nn indices
#' @return List of list of zones
#' @export
#' @keywords internal
logical2zones <- function(czones, nn, idx = seq_along(nn)) {
# for each element of czones,
# strip the element (which is a list of logical vectors)
# for each element of the list of logical vectors
# get the nn for idx i and then subset with each logical vector
unlist(lapply(seq_along(czones), function(i) {
lapply(czones[[i]], function(x) {
nn[[idx[i]]][x]
})
}), recursive = FALSE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.