R/uls.test.R

Defines functions uls.test

Documented in uls.test

#' Upper Level Set Spatial Scan Test
#'
#' \code{uls.test} performs the Upper Level Set (ULS)
#' spatial scan test of Patil and Taillie (2004).  The test
#' is performed using the spatial scan test based on a fixed
#' number of cases.  The windows are based on the Upper
#' Level Sets proposed by Patil and Taillie (2004).  The
#' clusters returned are non-overlapping, ordered from most
#' significant to least significant.  The first cluster is
#' the most likely to be a cluster.  If no significant
#' clusters are found, then the most likely cluster is
#' returned (along with a warning).
#'
#' The ULS method has a special (and time consuming)
#' construction when the observed rates aren't unique.  This
#' is unlikely to arise for real data, except with observed
#' rates of 0, which are of little interest.  The method can
#' take substantially if this is considered.
#'
#' @param w A binary spatial adjacency matrix for the
#'   regions.
#' @param check.unique A logical value indicating whether a
#'   check for unique values should be determined.  The
#'   default is \code{FALSE}.  This is unlikely to make a
#'   practical different for most real data sets.
#' @inheritParams scan.test
#'
#' @return Returns a list of length two of class scan. The
#'   first element (clusters) is a list containing the
#'   significant, non-ovlappering clusters, and has the the
#'   following components: \item{locids}{The location ids of
#'   regions in a significant cluster.} \item{pop}{The total
#'   population in the cluser window.} \item{cases}{The
#'   observed number of cases in the cluster window.}
#'   \item{expected}{The expected number of cases in the
#'   cluster window.} \item{smr}{Standarized mortaility
#'   ratio (observed/expected) in the cluster window.}
#'   \item{rr}{Relative risk in the cluster window.}
#'   \item{loglikrat}{The loglikelihood ratio for the
#'   cluster window (i.e., the log of the test statistic).}
#'   \item{pvalue}{The pvalue of the test statistic
#'   associated with the cluster window.} The second element
#'   of the list is the centroid coordinates.  This is
#'   needed for plotting purposes.
#' @author Joshua French
#' @seealso \code{\link{print.smerc_cluster}},
#' \code{\link{summary.smerc_cluster}},
#' \code{\link{plot.smerc_cluster}},
#' \code{\link{scan.stat}}, \code{\link{scan.test}}
#' @export
#' @references Patil, G.P. & Taillie, C. Upper level set
#'   scan statistic for detecting arbitrarily shaped
#'   hotspots. Environmental and Ecological Statistics
#'   (2004) 11(2):183-197.
#'   <doi:10.1023/B:EEST.0000027208.48919.7e>
#' @examples
#' data(nydf)
#' data(nyw)
#' coords <- with(nydf, cbind(longitude, latitude))
#' out <- uls.test(
#'   coords = coords, cases = floor(nydf$cases),
#'   pop = nydf$pop, w = nyw,
#'   alpha = 0.05, longlat = TRUE,
#'   nsim = 9, ubpop = 0.5
#' )
#' # better plotting
#' if (require("sf", quietly = TRUE)) {
#'    data(nysf)
#'    plot(st_geometry(nysf), col = color.clusters(out))
#' }
uls.test <- function(coords, cases, pop, w,
                     ex = sum(cases) / sum(pop) * pop,
                     nsim = 499, alpha = 0.1,
                     ubpop = 0.5, longlat = FALSE,
                     cl = NULL, type = "poisson",
                     check.unique = FALSE) {
  # sanity checking
  arg_check_scan_test(coords, cases, pop, ex, nsim, alpha,
    nsim + 1, ubpop, longlat, TRUE,
    k = 1, w = w, type = type
  )

  coords <- as.matrix(coords)
  zones <- uls.zones(cases, pop, w, ubpop)

  # compute needed information
  ty <- sum(cases)
  yin <- zones.sum(zones, cases)

  # compute test statistics for observed data
  if (type == "poisson") {
    ein <- zones.sum(zones, ex)
    tobs <- stat.poisson(yin, ty - yin, ein, ty - ein)
  } else if (type == "binomial") {
    tpop <- sum(pop)
    popin <- zones.sum(zones, pop)
    tobs <- stat.binom(yin, ty - yin, ty, popin, tpop - popin, tpop)
  }

  # compute test statistics for simulated data
  if (nsim > 0) {
    message("computing statistics for simulated data:")
    tsim <- uls.sim(
      nsim = nsim, ty = ty, ex = ex, w = w,
      pop = pop, ubpop = ubpop, cl = cl
    )
    pvalue <- mc.pvalue(tobs, tsim)
  } else {
    pvalue <- rep(1, length(tobs))
  }

  # significant, ordered, non-overlapping clusters and
  # information
  pruned <- sig_noc(
    tobs = tobs, zones = zones,
    pvalue = pvalue, alpha = alpha,
    order_by = "tobs"
  )

  smerc_cluster(
    tobs = pruned$tobs, zones = pruned$zones,
    pvalue = pruned$pvalue, coords = coords,
    cases = cases, pop = pop, ex = ex,
    longlat = longlat, method = "upper level set",
    rel_param = list(
      type = type,
      simdist = "multinomial",
      nsim = nsim,
      ubpop = ubpop
    ),
    alpha = alpha,
    w = w, d = NULL
  )
}
jfrench/smerc documentation built on Oct. 27, 2024, 5:13 p.m.