rmatnorm <- function (n, mean = matrix(0, nrow=nrow(sigmaS),ncol=ncol(sigmaT)),
sigmaS, sigmaT, method = c("eigen", "svd", "chol")){
# vec(X) ~ N(vec(M), kron(sigmaT, sigmaS))
# sigmaS Covariance matrix between rows
# sigmaT Covariance matrix between columns
nr <- nrow(sigmaS)
nc <- ncol(sigmaT)
if (!isSymmetric(sigmaS, tol = sqrt(.Machine$double.eps),
check.attributes = FALSE)) {
stop("sigmaS must be a symmetric matrix")
}
if (nrow(mean) != nr)
stop("nrow of mean and nrow of sigmaS have non-conforming size")
if (!isSymmetric(sigmaT, tol = sqrt(.Machine$double.eps),
check.attributes = FALSE)) {
stop("sigmaT must be a symmetric matrix")
}
if (ncol(mean) != nc)
stop("ncol of mean and ncol of sigmaT have non-conforming size")
mat = array( dim = c(nr, nc, n) )
method <- match.arg(method)
if (method == "eigen") {
ev <- eigen(sigmaT, symmetric = TRUE)
if (!all(ev$values >= -sqrt(.Machine$double.eps) * abs(ev$values[1]))) {
warning("sigmaT is numerically not positive semidefinite")
}
R <- t(ev$vectors %*% (t(ev$vectors) * sqrt(pmax(ev$values,0))))
} else if (method == "svd") {
s. <- svd(sigmaT)
if (!all(s.$d >= -sqrt(.Machine$double.eps) * abs(s.$d[1]))) {
warning("sigmaT is numerically not positive semidefinite")
}
R <- t(s.$v %*% (t(s.$u) * sqrt(pmax(s.$d, 0))))
} else if (method == "chol") {
R <- chol(sigmaT, pivot = TRUE)
R <- R[, order(attr(R, "pivot"))]
}
##
if (method == "eigen") {
ev <- eigen(sigmaS, symmetric = TRUE)
if (!all(ev$values >= -sqrt(.Machine$double.eps) * abs(ev$values[1]))) {
warning("sigmaS is numerically not positive semidefinite")
}
Q <- t(ev$vectors %*% (t(ev$vectors) * sqrt(pmax(ev$values,0))))
} else if (method == "svd") {
s. <- svd(sigmaS)
if (!all(s.$d >= -sqrt(.Machine$double.eps) * abs(s.$d[1]))) {
warning("sigmaS is numerically not positive semidefinite")
}
Q <- t(s.$v %*% (t(s.$u) * sqrt(pmax(s.$d, 0))))
} else if (method == "chol") {
Q <- chol(sigmaS, pivot = TRUE)
Q <- Q[, order(attr(Q, "pivot"))]
}
for(i in 1:n){
mat[,,i] = mean + t(Q) %*% matrix(rnorm(nr*nc), nrow=nr) %*% R
}
if(n==1){
mat <- mat[,,1]
}
mat
}
###############
rmatdata <- function (n, mean = matrix(0, nrow=nrow(sigmaS),ncol = ncol(sigmaT)),
sigmaS, sigmaT, method = c("eigen", "svd", "chol"),distribution = c("uniform","t"),df){
# vec(X) ~ distribution(vec(M), kron(sigmaT, sigmaS))
# sigmaS Covariance matrix between rows
# sigmaT Covariance matrix between columns
nr <- nrow(sigmaS)
nc <- ncol(sigmaT)
if (!isSymmetric(sigmaS, tol = sqrt(.Machine$double.eps),
check.attributes = FALSE)) {
stop("sigmaS must be a symmetric matrix")
}
if (nrow(mean) != nr)
stop("nrow of mean and nrow of sigmaS have non-conforming size")
if (!isSymmetric(sigmaT, tol = sqrt(.Machine$double.eps),
check.attributes = FALSE)) {
stop("sigmaT must be a symmetric matrix")
}
if (ncol(mean) != nc)
stop("ncol of mean and ncol of sigmaT have non-conforming size")
mat = array( dim = c(nr, nc, n) )
method <- match.arg(method)
if (method == "eigen") {
ev <- eigen(sigmaT, symmetric = TRUE)
if (!all(ev$values >= -sqrt(.Machine$double.eps) * abs(ev$values[1]))) {
warning("sigmaT is numerically not positive semidefinite")
}
R <- t(ev$vectors %*% (t(ev$vectors) * sqrt(pmax(ev$values,0))))
} else if (method == "svd") {
s. <- svd(sigmaT)
if (!all(s.$d >= -sqrt(.Machine$double.eps) * abs(s.$d[1]))) {
warning("sigmaT is numerically not positive semidefinite")
}
R <- t(s.$v %*% (t(s.$u) * sqrt(pmax(s.$d, 0))))
} else if (method == "chol") {
R <- chol(sigmaT, pivot = TRUE)
R <- R[, order(attr(R, "pivot"))]
}
##
if (method == "eigen") {
ev <- eigen(sigmaS, symmetric = TRUE)
if (!all(ev$values >= -sqrt(.Machine$double.eps) * abs(ev$values[1]))) {
warning("sigmaS is numerically not positive semidefinite")
}
Q <- t(ev$vectors %*% (t(ev$vectors) * sqrt(pmax(ev$values,0))))
} else if (method == "svd") {
s. <- svd(sigmaS)
if (!all(s.$d >= -sqrt(.Machine$double.eps) * abs(s.$d[1]))) {
warning("sigmaS is numerically not positive semidefinite")
}
Q <- t(s.$v %*% (t(s.$u) * sqrt(pmax(s.$d, 0))))
} else if (method == "chol") {
Q <- chol(sigmaS, pivot = TRUE)
Q <- Q[, order(attr(Q, "pivot"))]
}
if(distribution == "uniform"){
for(i in 1:n){
mat[,,i] = mean + t(Q) %*% matrix(runif(nr*nc,min=-df,max=df), nrow=nr) %*% R
}
} else if(distribution == "t"){
for(i in 1:n){
mat[,,i] = mean + t(Q) %*% matrix(rt(nr*nc,df=df), nrow=nr) %*% R
}
}
if(n==1){
mat <- mat[,,1]
}
mat
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.