Description Usage Arguments References Examples
The symbolic correlation coefficient, r, proposed by Billard(2007, 2008) and applied to the regression problem by Xu(2010), measures the correlation between the predicted values and the observed values.
1 | symbolic.r(model)
|
model |
|
Billard(2007, 2008). Sample covariance functions for complex quantitative data
Xu(2010), Symbolic Data Analysis: Interval-Valued Data Regression
1 2 3 4 5 6 7 8 9 10 | set.seed(2017)
x1_L = rnorm(30, 3, 0.01) - rnorm(30, 0, 0.01)
x1_U = rnorm(30, 3, 0.01) + rnorm(30, 3, 0.01)
x2_L = runif(30, 1.5, 3) - runif(30, 0, 1)
x2_U = runif(30, 1.5, 3) + runif(30, 1, 2)
y_L = x1_L + x2_L
y_U = x1_U + x2_U
temp <- as.data.frame(cbind(y_L, y_U, x1_L, x1_U, x2_L, x2_U))
m1 <- imcmtn(cbind(y_L, y_U) ~ x1_L + x1_U + x2_L + x2_U, data = temp, b = 100)
symbolic.r(m1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.