#' @export
print.summary.Bolstad = function(x, digits = max(3L, getOption("digits") - 3L), ...) {
cat("\nCall:\n")
cat(paste0(deparse(x$call), sep = "\n"), "\n")
cat("Residuals:", "\n")
resid = x$residuals
if (x$res.df > 5L) {
nam <- c("Min", "1Q", "Median", "3Q", "Max")
rq <- if (length(dim(resid)) == 2L)
structure(apply(t(resid), 1L, quantile), dimnames = list(nam,
dimnames(resid)[[2L]]))
else {
zz <- zapsmall(quantile(resid), digits + 1L)
structure(zz, names = nam)
}
}
print(rq, digits = digits, ...)
cat("\nCoefficients:\n")
coef.mat = matrix(nrow = x$rank, ncol = 3)
colnames(coef.mat) = c("Posterior Mean", "Std. Error", "t value")
rownames(coef.mat) = c(x$terms)
coef.mat[, "Posterior Mean"] = x$coef
coef.mat[, "Std. Error"] = x$std.err
coef.mat[, "t value"] = x$coef / x$std.err
print(format(coef.mat, digits = digits), print.gap = 2L, quote = FALSE, ...)
cat("---\n")
if (!is.null(x$prior)) {
prior.coef = x$prior$b0
cat("Prior Coefficients:\n")
names(prior.coef) = x$terms
print(format(prior.coef, digits = digits), print.gap = 2L, quote = FALSE, ...)
prior.cov = x$prior$V0
cat("\nPrior Covariance Matrix:\n")
dimnames(prior.cov) = list(x$terms, x$terms)
print(format(prior.cov, digits = digits), print.gap = 2L, quote = FALSE, ...)
}
else {
cat("\nNote: No prior given (Using flat prior).\n")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.