# LOAD PACKAGES AND DATA #######################################################
library(runoptGPP)
library(raster)
library(rgdal)
library(Rsagacmd)
library(foreach)
# Initiate a SAGA-GIS geoprocessing object
saga <- saga_gis(opt_lib = "sim_geomorphology")
# Set workspace
setwd("/home/jason/Data/Chile/")
# Load digital elevation model (DEM)
dem <- raster("elev_alos_12_5m_no_sinks.tif")
# Load runout source points
source_points <- readOGR(".", "debris_flow_source_points")
# Load runout track polygons and assign object ID based on row number
runout_polygons <- readOGR(".", "debris_flow_polys_sample")
runout_polygons$objectid <- 1:length(runout_polygons)
# DEFINE RW AND PCM GRID SEARCH SPACE ##########################################
pcmmd_vec <- seq(20, 150, by=5)
pcmmu_vec <- seq(0.04, 0.6, by=0.01)
polyid_vec <- 1:100
setwd("/home/jason/Scratch/NullExt_GPP_RW_Paper")
(load("rw_opt_params.Rd"))
# PCM GRIDSEARCH OPTIMIZATION W PARALLELIZATION ################################
setwd("/home/jason/Scratch/NullExt_GPP_PCM_Paper")
cl <- parallel::makeCluster(32)
doParallel::registerDoParallel(cl)
pcm_gridsearch_multi <-
foreach(poly_id=polyid_vec, .packages=c('rgdal','raster', 'rgeos', 'ROCR', 'Rsagacmd', 'sf', 'runoptGPP')) %dopar% {
.GlobalEnv$saga <- saga
pcmGridsearch(dem,
slide_plys = runout_polygons, slide_src = source_points, slide_id = poly_id,
rw_slp = rw_opt$rw_slp_opt, rw_ex = rw_opt$rw_exp_opt, rw_per = rw_opt$rw_per_opt,
pcm_mu_v = pcmmu_vec, pcm_md_v = pcmmd_vec,
gpp_iter = 1000,
buffer_ext = 500, buffer_source = 50,
predict_threshold = 0.5, save_res = TRUE,
plot_eval = FALSE,
saga_lib = saga)
}
parallel::stopCluster(cl)
# Get PCM optimal parameter set
pcm_opt <- pcmGetOpt(pcm_gridsearch_multi, performance = "relerr", measure = "median", plot_opt = TRUE, from_save = TRUE)
save(pcm_opt, file = "pcm_opt_params.Rd")
save(pcm_gridsearch_multi, file = "pcm_gridsearch_multi.Rd")
# PCM PARAM VALIDATION W SPATIAL CV #############################################
pcm_spcv <- pcmSPCV(pcm_gridsearch_multi, slide_plys = runout_polygons,
n_folds = 5, repetitions = 1000, from_save = FALSE)
freq_pcm <- pcmPoolSPCV(pcm_spcv, plot_freq = TRUE)
freq_pcm
save(pcm_spcv, file = "pcm_spcv.Rd")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.