#' Inserts data from surveys file maintained by Barry Fong
#'
#' @param log log file to save output to - defaults to
#'
#' @return
#' Logical - TRUE for worked ok.
#' @export
#'
#' @import dplyr
#' @import glue
#' @import data.table
#' @import readxl
#' @import tidyxl
#' @import unpivotr
#' @import lubridate
#'
#' @examples
#' run_updates()
#'
#'
#'
#'
insert_subregional <- function(log = "") {
dt_pth <- "Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/data"
fl <- "Q:/Teams/Intelligence Unit - General/Recovery Dashboard/Covid-19 Recovery Dashboard - labour market.xlsx"
#### People on UC ####
tryCatch({
# need population data to get proportion of people on UC
pop <- read_excel(file.path(dt_pth,
"economic_damage",
"housing_led_2018_base.xlsx"), "Persons") %>%
filter(str_detect(gss_code, "E090"),
age %in% 18:65) %>%
group_by(gss_code, borough) %>%
summarise(tot20 = sum(`2020`), tot21 = sum(`2021`)) %>%
mutate(LAD11NM = str_replace(borough, " and ", " & "))
dat <- xlsx_cells(fl, "people on UC - borough" ) %>%
filter(row > 7) %>%
behead("N", "month") %>%
behead("W", "blank") %>%
behead("W", "LAD11NM") %>%
filter(!is.na(numeric)) %>%
mutate(x = as.Date(paste0("1 ", month), format = "%d %B %Y"),
LAD11NM = str_replace(LAD11NM, " and ", " & ")) %>%
filter(x > as.Date("2018-12-31")) %>%
left_join(pop %>% select(LAD11NM, tot20, tot21)) %>%
mutate(tot = if_else(x <= as.Date("2020-12-31"),
tot20, tot21)) %>%
mutate(y = numeric/tot, dataset = "uc") %>%
filter(LAD11NM != "Total")
ldat <- dat %>%
group_by(x) %>%
summarise(
y = sum(numeric, na.rm = TRUE) / sum(tot, na.rm = TRUE)) %>%
ungroup() %>%
mutate(LAD11NM = "London", dataset = "uc")
rbind(
dat %>% select(dataset, x, y, LAD11NM),
ldat %>% select(dataset, x, y, LAD11NM)
) %>%
insert_boro_db()
}, error = function(e){error_log(e, "Subregional")})
tryCatch({
clmts <- fread("Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/indicators_data/db/updates/claimant_count.csv") %>%
as.data.frame()
clmts %>%
filter(LAD11NM != "City of London") %>%
insert_boro_db()
}, error = function(e){error_log(e, "Subregional")})
# #### Crime ####
# crm_dat <- read_excel(file.path(dt_pth, "support_communities",
# "Crime Data-week 48-CV-19.xlsx")) %>%
# clean_names() %>%
# select(week_end = 1, LAD11NM = ocu_name, y = tno_offs) %>%
# mutate(x = as.Date(week_end), dataset = "tno_b")
#
#
# l_crm <- crm_dat %>%
# group_by(x) %>%
# summarise(y = sum(y)) %>% ungroup() %>%
# mutate(dataset = "tno_b", LAD11NM = "London")
#
# rbind(crm_dat %>% select(dataset, x, y, LAD11NM),
# l_crm %>% select(dataset, x, y, LAD11NM)) %>%
# insert_boro_db()
#### Mobility Data ####
tryCatch({
google_act_fl <- file.path("Q:/Teams/D&PA/Apps/COVID19 Recovery Dashboard/",
"indicators_data/db/sub_updates/google.RDS")
dat <- readRDS(google_act_fl) %>%
select(date, activity, value, boro) %>%
mutate(wk = ceiling_date(as.Date(date), "week")) %>%
group_by(wk, boro) %>%
pivot_wider(names_from = activity, values_from = value) %>%
janitor::clean_names() %>%
summarise(res_wk = mean(residential,
na.rm = TRUE),
transit_wk = mean(transit_stations,
na.rm = TRUE)) %>%
ungroup() %>%
mutate(LAD11NM = str_replace(
boro, " and ", " & ")) %>%
mutate(LAD11NM = str_replace(
LAD11NM, "((London|Royal) Borough|City) of ", "")) %>%
mutate(LAD11NM = str_replace(LAD11NM, "London", "City") ) %>%
mutate(LAD11NM = ifelse(nchar(LAD11NM) == 0, "London", LAD11NM)) %>%
arrange(wk)
#### Transit ####
dat %>%
mutate(dataset = "gtransit") %>%
select(dataset,x = wk, y = transit_wk, LAD11NM) %>% #names()
insert_boro_db()
#### Homeworking ####
dat %>%
mutate(dataset = "gres") %>%
select(dataset, x = wk, y = res_wk, LAD11NM) %>%
insert_boro_db()
}, error = function(e){error_log(e, "Subregional")})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.