machineLearnUI <- function(id){
ns <- NS(id)
fluidPage(
tabsetPanel(
tabPanel(title = "Training",
fluidRow(
column(width = 4,
selectInput(inputId = ns("object"), label = "Select an object to process:",
choices = ""),
selectInput(inputId = ns("groupVar"), label = "Select the outcome variable",
choices = "")
),
column(width = 4,
numericInput(inputId = ns("trainSize"), label = "Train set size:",
value = 0.7, min = 0, max = 1, step = 0.01),
numericInput(inputId = ns("randSeed"), label = "Random seed for training:",
value = 123, min = 0, max = 1000000, step = 1)
),
column(width = 4,
actionButton(inputId = ns("partition"), label = "Create partition")
)
),
tabsetPanel(
tabPanel(title = "Biosign",
fluidRow(
column(width = 4,
selectInput(inputId = ns("trainSet"), label = "Select the training set:",
choices = "")
),
column(width = 4,
actionButton(inputId = ns("biosignMod"), label = "Create the biosign model")
)
),
fluidRow(
column(width = 12,
plotOutput(outputId = ns("biosignPlot"))
)
)
,),
tabPanel(title = "Caret",
fluidRow(
column(width = 4,
selectInput(inputId = ns("trainSet2"), label = "Select the training set:",
choices = "")
),
column(width = 4,
actionButton(inputId = ns("trainMod"), label = "Start training")
)
),
fluidRow(
column(width = 4,
selectInput(inputId = ns("mod"), label = "Training model:",
choices = names(getModelInfo())),
selectInput(inputId = ns("metric"), label = "Training metric:",
choices = c("Accuracy", "Kappa")),
selectInput(inputId = ns("prepro"), label = "Pre-processing steps:",
choices = c("center", "scale", "range", "knnImpute","BoxCox"), multiple = TRUE),
selectInput(inputId = ns("cvmeth"), label = "Cross-validation method:",
choices = c("k-fold", "loo"))
),
column(width = 4,
numericInput(inputId = ns("fold"), label = "K-folds:",
value = 10, min = 1, max = 100, step = 1),
numericInput(inputId = ns("partitions"), label = "Number of partitions:",
value = 5, min = 1, max = 100, step = 1),
numericInput(inputId = ns("tuneLength"), label = "Granularity of tuning parameters grid:",
value = 10, min = 1, max = 100, step = 1)
)
),
)
)
),
tabPanel(title = "Test & Plot",
fluidRow(
column(width = 4,
selectInput(inputId = ns("finMod"), label = "Select the model to predict:",
choices = ""),
selectInput(inputId = ns("groupVar2"), label = "Grouping Variable:",
choices = "")
),
column(width = 4,
selectInput(inputId = ns("testSet"), label = "Select the test set:",
choices = ""),
selectInput(inputId = ns("posClass"), label = "Select the positive class:",
choices = "")
),
column(width = 4,
actionButton(inputId = ns("plot"), label = "Calculate results")
)
),
fluidRow(
column(width = 12,
verbatimTextOutput(outputId = ns("cm"))
)
),
fluidRow(
column(width = 12,
plotOutput(outputId = ns("roc"))
)
)
)
),
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.