#' Ordinary Least Squares
#'
#' This function returns point estimates and the variance-covariance matrix.
#' Written for data.table arguments.
#' @param Yvar Dependent variable
#' @param Xvars Character vector of control variables
#' @param data Of type data.table
#' @param intercept Logical, if including 1 as model intercept
#' @param varcov Method for variance-covariance estimation
#' @param tolerance Tolerance level for matrix inversion
#' @keywords ols linear regression
#' @export
#' @examples
#' my.ols()
my.ols <- function(Yvar, Xvars, data, intercept=TRUE,
varcov="het", tolerance=1e-16) {
# Select data and add intercept
data <- data.table::as.data.table(data)
Y <- data[,..Yvar]
X <- data[,..Xvars] # Must be char vector
if (intercept) {
X <- X[,.intercept:=1]
setcolorder(X, c(".intercept"))
}
# Coefficients
XtXinv <- solve(t(X) %*% as.matrix(X), tol = tolerance)
XtY <- t(X) %*% as.matrix(Y)
beta <- XtXinv %*% XtY
colnames(beta) <- c("coefs")
# Predicted values, residuals, and squared residuals
Yhat <- as.matrix(X) %*% as.matrix(unlist(beta))
U <- as.matrix(as.matrix(Y) - Yhat)
U2 <- c(U) * c(U)
# Variances (multiple options)
if (varcov == "het") {
Sigma <- XtXinv %*% (t(X) %*% diag(U2) %*% as.matrix(X)) %*% XtXinv *
nrow(X)/(nrow(X)-ncol(X))
}
if (varcov == "hom") {
Sigma <- sum(U2)/(nrow(X)-ncol(X)) * XtXinv
}
# Return results
results <- list(beta = beta, Sigma = Sigma)
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.