#' Automatic benchmarking of data sets
#'
#' This function provides an automated mechanism for
#' producing the identifying the most likely cluster and
#' largest test statistic for each simulated data set in one
#' of the \code{benchmark2003} or \code{benchmark2006} data
#' sets.
#'
#' For the specified data sets, \code{TESTFUN} is applied to
#' each row of the specified data sets.
#'
#' If the results are saved, they are saved in the current
#' working directory with the name \code{paste("t",
#' data.name, "_", test.name, ".rda", sep = "")}.
#'
#' @param TESTFUN A function that returns a list containing
#' the maximum test statistic and the indices of the most
#' likely cluster. The first argument MUST take a vector
#' of cases.
#' @param test.name The name of the test being applied. Must
#' be a character vector.
#' @param data.name A vector of names for the
#' \code{benchmark2003} or \code{benchmark2006} data sets.
#' @param SAVE A logical value indicating whether the
#' results should be saved as an rda file. If
#' \code{TRUE}, then the file is saved as \code{paste("t",
#' data.name, "_", test.name, ".rda", sep = "")} to the
#' current working directly. If FALSE, a list of results
#' is returned. Default is \code{FALSE}.
#' @param loop A logicial value indicating whether a loop
#' should be used to run the benchmark instead of
#' \code{\link[pbapply]{pbapply}}. The default is
#' \code{FALSE}.
#' @param pfreq The frequency that messages are reported
#' from the loop. The default is \code{pfreq = 1}, meaning
#' a message is returned for each index of the loop. This
#' is chosen because it is assumed that this will only be
#' used when the method is quite slow.
#' @param ... Additional arguments passed on to the TESTFUN
#' and \code{\link[pbapply]{pbapply}}.
#'
#' @return A list of results or writing out to an rda file.
#' @export
#'
#' @examples
#' # load required data
#' data(neastdata)
#' # construct zone information
#' coords = neastdata[, c("x", "y")]
#' ubpop = 0.5
#' pop = neastdata$population
#'
#' # all distinct zones subject to population constraints
#' zones = smerc::scan.zones(coords, pop, ubpop)
#' # expected number of cases in each region
#' e = 600/sum(pop)*pop
#'
#' # expected number of cases in each zone
#' ein = sapply(zones, function(x) sum(e[x]))
#' # expected number of cases outside of each zone
#' eout = 600 - ein
#'
#' # takes a set of cases and determines the largest
#' # test statistic across all zones using required
#' # information
#' mlc.scan.test = function(cases, zones, ein, eout, ty) {
#' # compute yin for each zone
#' yin = sapply(zones, function(zone) sum(cases[zone]))
#' # take max over statistics of all zones
#' tobs = smerc::scan.stat(yin, ein, eout, ty)
#' wmax = which.max(tobs)
#' return(list(tmax = tobs[wmax],
#' mlc = zones[[wmax]]))
#' }
#'
#' out = benchmark.data(TESTFUN = mlc.scan.test,
#' test.name = "scan_test",
#' data.name = c("fakedata1", "fakedata2"),
#' SAVE = FALSE,
#' zones = zones,
#' ein = ein,
#' eout = eout,
#' ty = 600)
benchmark.data = function(TESTFUN, test.name,
data.name,
SAVE = FALSE, loop = FALSE,
pfreq = 1, ...) {
if (!is.character(test.name)) {
stop("test.name must be a character vector")
}
outlist = vector("list", length(data.name))
for (idx in seq_along(data.name)) {
dname = data.name[idx]
if (dname == "c") {
utils::data("cc")
message(paste("Analyzing c"))
if (!loop) {
tc = pbapply::pbapply(get("cc"), 1, FUN = TESTFUN,
...)
} else {
cdata = get("cc")
tc = vector("list", nrow(cdata))
for (i in seq_along(tc)) {
tc[[i]] = do.call(what = TESTFUN,
args = list(cdata[i,], ...))
if ((i %% pfreq) == 0 ) {
message("Analysis of set ", i, " completed at ", Sys.time())
}
}
}
save_nm = paste("tc_", test.name, ".rda", sep = "")
if (SAVE) {
save(tc, file = save_nm, compress = "bzip2")
} else {
outlist[[idx]] = tc
}
} else {
do.call(utils::data, list(dname))
oname = paste("t", dname, sep = "")
message(paste("Analyzing",dname))
if (!loop) {
tdata = pbapply::pbapply(get(dname), 1,
FUN = TESTFUN,
...)
} else {
# current data
cdata = get(dname)
tdata = vector("list", nrow(cdata))
for (iloop in seq_along(tdata)) {
tdata[[iloop]] = do.call(what = TESTFUN,
args = list(cdata[iloop,], ...))
if ((iloop %% pfreq) == 0 ) {
message("Analysis of set ", iloop, " completed at ", Sys.time())
}
}
}
save_nm = paste(oname, "_", test.name, ".rda", sep = "")
if (SAVE) {
assign(oname, tdata)
save(list = oname, file = save_nm, compress = "bzip2")
} else {
outlist[[idx]] = tdata
}
}
}
if (SAVE) {
return(NULL)
} else {
return(outlist)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.