ConfigSignal | R Documentation |
QcConfigSignal
QcConfigSignal
QcConfigSignal null placeholder
QcConfigSignal.files
QcConfigSignal.save_config
ConfigSignal( config_df, run_by = "All", to_run = NULL, to_run_reference = NULL, color_by = "file", color_mapping = NULL, read_mode = NULL, view_size = getOption("SQC_VIEW_SIZE", 3000), window_size = 200, fetch_options = list(), cluster_value = NULL, linearQuantile_cutoff = 0.98, sort_value = NULL, sort_method = c("hclust", "sort")[2], plot_value = NULL, heatmap_limit_values = c(0, 10), lineplot_free_limits = TRUE, center_signal_at_max = FALSE, flip_signal_mode = flip_signal_modes$none, is_null = FALSE, n_clusters = 6 )
config_df |
A data.frame containing configuration information for signal (bam or bigwig) files. Should contain a "file" attribute and entires for run_by and color_by. |
run_by |
Name of the attribute specify how signal data should be grouped. |
to_run |
Values in run_by that represent running groups. |
to_run_reference |
Values in run_by that should be included in all run groups. |
color_by |
Name of the attribute specify how signal data should be colored in relevant plots |
color_mapping |
Name character vector where names are values of color_by and values are valid R colors (color names or hex values). |
read_mode |
Read mode of signal data, one of bam_SE, bam_PE, or bigwig. Use SQC_READ_MODES$. |
view_size |
view size in bp to apply. Defaults to 3000. |
window_size |
The window size used when fetching signal. Lower values increase resolution but also RAM usage. Default is 200 bp. |
fetch_options |
Named list of additional arguments to pass to signal fetch function. |
cluster_value |
Value in SQC_SIGNAL_VALUES$ to use for clustering. RPM values are not valid if read_mode is "bigwig". |
linearQuantile_cutoff |
Quantile to use for linearQuantile normalization procedure. Values above this cutoff are treated as outliers. |
sort_value |
Value in SQC_SIGNAL_VALUES$ to use for sorting. RPM values are not valid if read_mode is "bigwig". |
sort_method |
One of two available method to use when sorting within clusters. If "hclust", hierarchical clustering is applied. If the default of "sort", regions are sorting by decreasing signal. |
plot_value |
Value in SQC_SIGNAL_VALUES$ to represent in plots. RPM values are not valid if read_mode is "bigwig". |
heatmap_limit_values |
Color scale limits for heatmaps. Default is 0 to 10. |
lineplot_free_limits |
If TRUE (default), lineplot facets per cluster will have free axis. If FALSE a consistnet y-axis is used for all clusters. |
center_signal_at_max |
If TRUE, signal is centered at local maxima prior to any clustering. The default is FALSE. See details for explanation or interaction with assessment features. |
flip_signal_mode |
Value is SQC_FLIP_SIGNAL_MODES$. If not "none" (Default) signal profiles are flipped so that highest signal is on one side or the other. See details for explanation or interaction with assessment features. |
is_null |
If TRUE, this QcConfigSignal is considered null/empty. |
n_clusters |
The number of k-means clusters for the heatmap. Since center_signal_at_max and flip_signal_mode have the potential to modify the assessment regions based on signal run groups, the modified assessment feature set is store in signal_data for each run group. They can be accessed like this: sqc$signal_data$FEATURE_NAME$SIGNAL_NAME$query_gr |
A QcConfigSignal object
A null/empty QcConfigSignal object
A QcConfigSignal object
a QcConfigSignal object
A list of 2 items prof_dt and query_gr. prof_dt is a tidy data.table of signal profiles. query_gr is a GRanges that may have been modified from input query_gr if signal profiles are flipped or centered according to center_signal_at_max or flip_signal_mode in the signal config.
Invisibly returns path to saved config file.
view_size
read_mode
fetch_options
cluster_value
linearQuantile_cutoff
sort_value
sort_method
plot_value
heatmap_limit_values
lineplot_free_limits
center_signal_at_max
flip_signal_mode
n_clusters
bam_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bam_config.csv") bam_config_df = .parse_config_body(bam_config_file) sig_conf = QcConfigSignal(bam_config_df) bigwig_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bigwig_config.csv") bigwig_config_df = .parse_config_body(bigwig_config_file) sig_conf.bw = QcConfigSignal(bigwig_config_df) QcConfigSignal.null() bam_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bam_config.csv") QcConfigSignal.parse(bam_config_file) bigwig_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bigwig_config.csv") QcConfigSignal.parse(bigwig_config_file) bam_files = dir(system.file(package = "ssvQC", "extdata"), pattern = "CTCF.+bam$", full.names = TRUE) object = QcConfigSignal.files(bam_files) plot(object) object2 = QcConfigSignal.files(bam_files, sample_names = c("MCF10A_CTCF", "MCF10AT1_CTCF", "MCF10CA1a_CTCF"), group_names = c("10A", "AT1", "CA1"), group_colors = c("firebrick", "slategray2", "forestgreen") ) plot(object2) bam_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bam_config.csv") qc_signal = QcConfigSignal.parse(bam_config_file) feature_config_file = system.file(package = "ssvQC", "extdata/ssvQC_peak_config.csv") qc_features = QcConfigFeatures.parse(feature_config_file) query_gr = qc_features$assessment_features fetch_signal_at_features(qc_signal, query_gr) bam_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bam_config.csv") bam_config = QcConfigSignal.parse(bam_config_file) #QcConfigSignal.save_config(bam_config, "bam_config.csv") bigwig_config_file = system.file(package = "ssvQC", "extdata/ssvQC_bigwig_config.csv") bigwig_config = QcConfigSignal.parse(bigwig_config_file) #QcConfigSignal.save_config(bigwig_config, "bigwig_config.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.