R/guyot.R

Defines functions guyot

Documented in guyot

#' Algorithm of Guyot et al from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313891/
guyot <- function(digizeit, pub.risk, tot.events = "NA", tags = list(), xlabel = "Time", ylabel = "Survival"){

  #Read in survival times read by digizeit
  t.S<-digizeit[,2]
  S<-digizeit[,3]

  #Read in published numbers at risk, n.risk, at time, t.risk, lower and upper # indexes for time interval
  t.risk<-pub.risk[,2]
  lower<-pub.risk[,3]
  upper<-pub.risk[,4]
  n.risk<-pub.risk[,5]
  n.int<-length(n.risk)
  n.t<- upper[n.int]

  #Initialise vectors
  n.censor<- rep(0,(n.int-1))
  n.hat<-rep(n.risk[1]+1,n.t)
  cen<-rep(0,n.t)
  d<-rep(0,n.t)
  KM.hat<-rep(1,n.t)
  last.i<-rep(1,n.int)
  sumdL<-0

  if (n.int > 1){
    #Time intervals 1,...,(n.int-1)
    for (i in 1:(n.int-1)){
      #First approximation of no. censored on interval i
      n.censor[i]<- round(n.risk[i]*S[lower[i+1]]/S[lower[i]]- n.risk[i+1])

      #Adjust tot. no. censored until n.hat = n.risk at start of interval (i+1)
      while((n.hat[lower[i+1]]>n.risk[i+1])||((n.hat[lower[i+1]]<n.risk[i+1])&&(n.censor[i]>0))){
        if (n.censor[i]<=0){
          cen[lower[i]:upper[i]]<-0
          n.censor[i]<-0
        }
        if (n.censor[i]>0){
          cen.t<-rep(0,n.censor[i])
          for (j in 1:n.censor[i]){
            cen.t[j]<- t.S[lower[i]] + j*(t.S[lower[(i+1)]]-t.S[lower[i]])/(n.censor[i]+1)
          }
          #Distribute censored observations evenly over time. Find no. censored on each time interval.
          cen[lower[i]:upper[i]]<-hist(cen.t,breaks=t.S[lower[i]:lower[(i+1)]],plot=F)$counts
        }

        #Find no. events and no. at risk on each interval to agree with K-M estimates read from curves
        n.hat[lower[i]]<-n.risk[i]
        last<-last.i[i]
        for (k in lower[i]:upper[i]){
          if (i==1 & k==lower[i]){
            d[k]<-0
            KM.hat[k]<-1
          }else {
            d[k]<-round(n.hat[k]*(1-(S[k]/KM.hat[last])))
            KM.hat[k]<-KM.hat[last]*(1-(d[k]/n.hat[k]))
          }
          n.hat[k+1]<-n.hat[k]-d[k]-cen[k]
          if (d[k] != 0) last<-k
        }
        n.censor[i]<- n.censor[i]+(n.hat[lower[i+1]]-n.risk[i+1])
      }
      if (n.hat[lower[i+1]]<n.risk[i+1])
        n.risk[i+1]<-n.hat[lower[i+1]]
      last.i[(i+1)]<-last
    }
  }

  #Time interval n.int.
  if (n.int>1){
    #Assume same censor rate as average over previous time intervals.
    n.censor[n.int]<- min(round(sum(n.censor[1:(n.int-1)])*(t.S[upper[n.int]]- t.S[lower[n.int]])/(t.S[upper[(n.int-1)]]-t.S[lower[1]])), n.risk[n.int])
  }
  if (n.int==1){
    n.censor[n.int]<-0
  }
  if (n.censor[n.int] <= 0){
    cen[lower[n.int]:(upper[n.int]-1)]<-0
    n.censor[n.int]<-0
  }

  if(n.censor[n.int]>0){
    cen.t<-rep(0,n.censor[n.int])
    for (j in 1:n.censor[n.int]){
      cen.t[j]<- t.S[lower[n.int]] + j*(t.S[upper[n.int]]-t.S[lower[n.int]])/(n.censor[n.int]+1)
    }
    cen[lower[n.int]:(upper[n.int]-1)]<-hist(cen.t,breaks=t.S[lower[n.int]:upper[n.int]],
                                             plot=F)$counts
  }

  #Find no. events and no. at risk on each interval to agree with K-M estimates read from curves
  n.hat[lower[n.int]]<-n.risk[n.int]
  last<-last.i[n.int]

  for (k in lower[n.int]:upper[n.int]){
    if(KM.hat[last] !=0){
      d[k]<-round(n.hat[k]*(1-(S[k]/KM.hat[last])))
    } else {
      d[k]<-0
    }
    KM.hat[k]<-KM.hat[last]*(1-(d[k]/n.hat[k]))
    n.hat[k+1]<-n.hat[k]-d[k]-cen[k]
    #No. at risk cannot be negative
    if (n.hat[k+1] < 0) {
      n.hat[k+1]<-0
      cen[k]<-n.hat[k] - d[k]
    }
    if (d[k] != 0) last<-k
  }

  #If total no. of events reported, adjust no. censored so that total no. of events agrees.
  if (tot.events != "NA"){
    if (n.int>1){
      sumdL<-sum(d[1:upper[(n.int-1)]])
      #If total no. events already too big, then set events and censoring = 0 on all further time intervals
      if (sumdL >= tot.events){
        d[lower[n.int]:upper[n.int]]<- rep(0,(upper[n.int]-lower[n.int]+1))
        cen[lower[n.int]:(upper[n.int]-1)] <- rep(0,(upper[n.int]-lower[n.int]))
        n.hat[(lower[n.int]+1):(upper[n.int]+1)]<- rep(n.risk[n.int],(upper[n.int]+1-lower[n.int]))
      }
    }
    #Otherwise adjust no. censored to give correct total no. events
    if ((sumdL < tot.events)|| (n.int==1)){
      sumd<-sum(d[1:upper[n.int]])
      while ((sumd > tot.events)||((sumd< tot.events)&&(n.censor[n.int]>0))){
        n.censor[n.int]<- n.censor[n.int] + (sumd - tot.events)
        if (n.censor[n.int]<=0){
          cen[lower[n.int]:(upper[n.int]-1)]<-0
          n.censor[n.int]<-0
        }
        if(n.censor[n.int]>0){
          cen.t<-rep(0,n.censor[n.int])
          for (j in 1:n.censor[n.int]){
            cen.t[j]<- t.S[lower[n.int]] + j*(t.S[upper[n.int]]-t.S[lower[n.int]])/(n.censor[n.int]+1)
          }
          cen[lower[n.int]:(upper[n.int]-1)]<-hist(cen.t,breaks=t.S[lower[n.int]:upper[n.int]], plot=F)$counts
        }
        n.hat[lower[n.int]]<-n.risk[n.int]
        last<-last.i[n.int]
        for (k in lower[n.int]:upper[n.int]){
          d[k]<-round(n.hat[k]*(1-(S[k]/KM.hat[last])))
          KM.hat[k]<-KM.hat[last]*(1-(d[k]/n.hat[k]))
          if (k != upper[n.int]){
            n.hat[k+1]<-n.hat[k]-d[k]-cen[k] #No. at risk cannot be negative
            if (n.hat[k+1] < 0) {
              n.hat[k+1]<-0
              cen[k]<-n.hat[k] - d[k]
            }
          }
          if (d[k] != 0) last<-k
        }
        sumd<- sum(d[1:upper[n.int]])
      }
    }
  }

  ### Now form IPD ###
  #Initialise vectors
  t.IPD<-rep(t.S[n.t],n.risk[1])
  event.IPD<-rep(0,n.risk[1])
  #Write event time and event indicator (=1) for each event, as separate row in t.IPD and event.IPD
  k=1
  for (j in 1:n.t){
    if(d[j]!=0){
      t.IPD[k:(k+d[j]-1)]<- rep(t.S[j],d[j])
      event.IPD[k:(k+d[j]-1)]<- rep(1,d[j])
      k<-k+d[j]
    }
  }
  #Write censor time and event indicator (=0) for each censor, as separate row in t.IPD and event.IPD
  for (j in 1:(n.t-1)){
    if(cen[j]!=0){
      t.IPD[k:(k+cen[j]-1)]<- rep(((t.S[j]+t.S[j+1])/2),cen[j])
      event.IPD[k:(k+cen[j]-1)]<- rep(0,cen[j])
      k<-k+cen[j]
    }
  }
  #Output IPD
  if(length(tags) > 0) IPD <- data.frame(time = t.IPD, flag = event.IPD, tags, stringsAsFactors = FALSE)
  else IPD <- data.frame(time = t.IPD, flag = event.IPD, stringsAsFactors = FALSE)

  plot(digizeit$t, digizeit$s, col = "red", type = "s", ylim = c(0, 1), xlab = xlabel, ylab = ylabel)
  lines(survfit(Surv(time,flag)~1, data=IPD), col = "blue", conf.int = FALSE, mark.time = FALSE)

  return(IPD)
}
jrdnmdhl/reconIPD documentation built on Feb. 25, 2023, 6:23 a.m.