R/inits.norm.R

inits.norm <- function (Y, x, Treat, varprior, ntreat = 2) 
{
	if (!is.null(x)) {x = as.matrix(x)}

    if (is.null(x)) {
        fit <- summary(lm(Y ~ Treat))
    } else {
		slope <- se.slope <- rep(NA, dim(as.matrix(x))[2]) # no.treat x no.x
        fit <- summary(lm(Y ~ Treat + x))
		slope <- tryCatch({coef(fit)[2+seq(dim(x)[2]), 1]}, error=function(cond){ caught <- rep(0, length(slope)) })
		
		if (sum(slope) != 0) {
			if (!is.nan(fit$fstat[1])) {
				se.slope <- coef(fit)[2+seq(dim(x)[2]),2]
			} else {
				se.slope <- rep(1,length(se.slope))
			}
		} else {
			se.slope <- rep(1, length(se.slope))
		}
    }

    alpha = coef(fit)[1, 1]
    beta = coef(fit)[2, 1]
    if (!is.nan(fit$fstat[1])) {
        se.alpha = coef(fit)[1, 2]
        se.beta = coef(fit)[2, 2]
        tau <- fit$sigma^2
    } else {
        se.alpha = se.beta = tau = 1
    }
    inits.1 = list(alpha = alpha + se.alpha * rnorm(1))
    names(inits.1) = "alpha"
    inits.2 = list(alpha = alpha + se.alpha * rnorm(1))
    names(inits.2) = "alpha"
    inits.3 = list(alpha = alpha + se.alpha * rnorm(1))
    names(inits.3) = "alpha"
    inits.1[[1 + length(inits.1)]] = beta + se.beta * rnorm(1)
    names(inits.1)[[length(inits.1)]] = "beta"
    inits.2[[1 + length(inits.2)]] = beta + se.beta * rnorm(1)
    names(inits.2)[[length(inits.2)]] = "beta"
    inits.3[[1 + length(inits.3)]] = beta + se.beta * rnorm(1)
    names(inits.3)[[length(inits.3)]] = "beta"
    if (!is.null(x)) {
        inits.1[[1 + length(inits.1)]] = slope + se.slope * rnorm(1)
        names(inits.1)[[length(inits.1)]] = "slope"
        inits.2[[1 + length(inits.2)]] = slope + se.slope * rnorm(1)
        names(inits.2)[[length(inits.2)]] = "slope"
        inits.3[[1 + length(inits.3)]] = slope + se.slope * rnorm(1)
        names(inits.3)[[length(inits.3)]] = "slope"
    }
    random.ISigma1 = rchisq(1, fit$df[2])
    random.ISigma2 = rchisq(1, fit$df[2])
    random.ISigma3 = rchisq(1, fit$df[2])
    prec.1 = random.ISigma1/(tau * fit$df[2])
    prec.2 = random.ISigma2/(tau * fit$df[2])
    prec.3 = random.ISigma3/(tau * fit$df[2])
    if (varprior[[1]] == "prec") {
        inits.1[[1 + length(inits.1)]] = prec.1
        names(inits.1)[[length(inits.1)]] = "prec"
        inits.2[[1 + length(inits.2)]] = prec.2
        names(inits.2)[[length(inits.2)]] = "prec"
        inits.3[[1 + length(inits.3)]] = prec.3
        names(inits.3)[[length(inits.3)]] = "prec"
    } else if (varprior[[1]] == "Sd" & !is.null(x)) {
        inits.1[[1 + length(inits.1)]] = 0.5/sqrt(prec.1)
        names(inits.1)[[length(inits.1)]] = "Sd"
        inits.2[[1 + length(inits.2)]] = 0.5/sqrt(prec.2)
        names(inits.2)[[length(inits.2)]] = "Sd"
        inits.3[[1 + length(inits.3)]] = 0.5/sqrt(prec.3)
        names(inits.3)[[length(inits.3)]] = "Sd"
    } else if (varprior[[1]] == "var") {
        inits.1[[1 + length(inits.1)]] = 1/prec.1
        names(inits.1)[[length(inits.1)]] = "Var"
        inits.2[[1 + length(inits.2)]] = 1/prec.2
        names(inits.2)[[length(inits.2)]] = "Var"
        inits.3[[1 + length(inits.3)]] = 1/prec.3
        names(inits.3)[[length(inits.3)]] = "Var"
    }
	
    inInits <- list(inits.1, inits.2, inits.3)
    return(inInits)
}
jservadio/TrialistNof1 documentation built on May 20, 2019, 2:08 a.m.