#' Interface to fit maltipoo models
#'
#' This function is largely a more user friendly wrapper around
#' \code{\link{optimMaltipooCollapsed}} and
#' \code{\link{uncollapsePibble}}.
#' See details for model specification.
#' Notation: \code{N} is number of samples,
#' \code{D} is number of multinomial categories, \code{Q} is number
#' of covariates, \code{P} is the number of variance components
#' \code{iter} is the number of samples of \code{eta} (e.g.,
#' the parameter \code{n_samples} in the function
#' \code{\link{optimPibbleCollapsed}})
#'
#' @param U a PQ x Q matrix of stacked variance components (each of dimension Q x Q)
#' @param init (D-1) x Q initialization for Eta for optimization
#' @param ellinit P vector initialization values for ell for optimization
#' @inheritParams pibble_fit
#'
#' @details the full model is given by:
#' \deqn{Y_j \sim Multinomial(Pi_j)}
#' \deqn{Pi_j = Phi^{-1}(Eta_j)}
#' \deqn{Eta \sim MN_{D-1 x N}(Lambda*X, Sigma, I_N)}
#' \deqn{Lambda \sim MN_{D-1 x Q}(Theta, Sigma, Gamma)}
#' \deqn{Gamma = e^{ell_1} U_1 + ... + e^{ell_P} U_P}
#' \deqn{Sigma \sim InvWish(upsilon, Xi)}
#'
#' Where \eqn{A = (I_N + X * Gamma * X')^{-1}}{A = (I_N + X * Gamma * X')^(-1)}, \eqn{K^{-1} = Xi}{K^(-1) = Xi} is a (D-1)x(D-1)
#' covariance matrix, \eqn{U_1} is a Q x Q covariance matrix (a variance component),
#' \eqn{e^{ell_i}} is a scale for that variance component and \eqn{Phi^{-1}} is
#' ALRInv_D transform.
#'
#' Default behavior is to use MAP estimate for uncollaping collapsed maltipoo
#' model if laplace approximation is not preformed.
#'
#' Parameters ell are treated as fixed and estimated by MAP estimation.
#'
#' @name maltipoo_fit
#' @return an object of class maltipoofit
#' @noRd
maltipoo <- function(Y=NULL, X=NULL, upsilon=NULL, Theta=NULL, U=NULL,
Xi=NULL, init=NULL, ellinit=NULL,
pars=c("Eta", "Lambda", "Sigma"),
...){
args <- list(...)
N <- try_set_dims(c(ncol(Y), ncol(X), args[["N"]]))
D <- try_set_dims(c(nrow(Y), nrow(Theta)+1, nrow(Xi)+1, ncol(Xi)+1, args[["D"]]))
Q <- try_set_dims(c(nrow(X), ncol(Theta), ncol(U), args[["Q"]]))
P <- try_set_dims(c(nrow(U)/Q)) # Maltipoo specific
if (any(c(N, D, Q) <=0)) stop("N, D, and Q must all be greater than 0 (D must be greater than 1)")
if (D <= 1) stop("D must be greater than 1")
## construct default values ##
# for priors
if (is.null(upsilon)) upsilon <- D+3 # default is minimal information
# but with defined mean
if (is.null(Theta)) Theta <- matrix(0, D-1, Q) # default is mean zero
if (is.null(U)) U <- diag(Q) # default is iid
if (is.null(Xi)) {
# default is iid on base scale
# G <- cbind(diag(D-1), -1) ## alr log-constrast matrix
# Xi <- 0.5*G%*%diag(D)%*%t(G) ## default is iid on base scale
Xi <- matrix(0.5, D-1, D-1) # same as commented out above 2 lines
diag(Xi) <- 1 # same as commented out above 2 lines
Xi <- Xi*(upsilon-D) # make inverse wishart mean Xi as in previous lines
}
# check dimensions
check_dims(upsilon, 1, "upsilon")
check_dims(Theta, c(D-1, Q), "Theta")
check_dims(U, c(P*Q, Q), "Q")
check_dims(Xi, c(D-1, D-1), "Xi")
# set number of iterations
n_samples <- args_null("n_samples", args, 2000)
use_names <- args_null("use_names", args, TRUE)
# This is the signal to sample the prior only
if (is.null(Y)){
if (("Eta" %in% pars) & (is.null(X))) stop("X must be given if Eta is to be sampled")
# create matipoofit object and pass to sample_prior then return
out <- maltipoofit(N=N, D=D, Q=Q, P=P, coord_system="alr", alr_base=D,
upsilon=upsilon, Theta=Theta, Xi=Xi,U=U,
# names_categories=rownames(Y), # these won't be present...
# names_samples=colnames(Y),
# names_covariates=colnames(X),
X=X)
out <- sample_prior(out, n_samples=n_samples, pars=pars, use_names=use_names)
return(out)
} else {
if (is.null(X)) stop("X must be given to fit model")
if(is.null(init)) init <- random_pibble_init(Y) # initialize init
if(is.null(ellinit)) ellinit <- rep(0, P)
}
# for optimization and laplace approximation
calcGradHess <- args_null("calcGradHess", args, TRUE)
b1 <- args_null("b1", args, 0.9)
b2 <- args_null("b2", args, 0.99)
step_size <- args_null("step_size", args, 0.003)
epsilon <- args_null("epsilon", args, 10e-7)
eps_f <- args_null("eps_f", args, 1e-10)
eps_g <- args_null("eps_g", args, 1e-4)
max_iter <- args_null("max_iter", args, 10000)
verbose <- args_null("verbose", args, FALSE)
verbose_rate <- args_null("verbose_rate", args, 10)
decomp_method <- args_null("decomp_method", args, "cholesky")
eigvalthresh <- args_null("eigvalthresh", args, 0)
jitter <- args_null("jitter", args, 0)
## precomputation ##
K <- solve(Xi)
## fit collapsed model ##
fitc <- optimMaltipooCollapsed(Y, upsilon, Theta, X, K, U, init, ellinit,
n_samples,
calcGradHess, b1, b2, step_size, epsilon, eps_f,
eps_g, max_iter, verbose, verbose_rate,
decomp_method, eigvalthresh,
jitter)
# if n_samples=0 or if hessian fails, then use MAP eta estimate for
# uncollapsing and unless otherwise specified against, use only the
# posterior mean for Lambda and Sigma
if (is.null(fitc$Samples)) {
fitc$Samples <- add_array_dim(fitc$Pars, 3)
ret_mean <- args_null("ret_mean", args, TRUE)
if (ret_mean && n_samples>0){
warning("Laplace Approximation Failed, using MAP estimate of eta",
" to obtain Posterior mean of Lambda and Sigma",
" (i.e., not sampling from posterior distribution of Lambda or Sigma)")
}
if (!ret_mean && n_samples > 0){
warning("Laplace Approximation Failed, using MAP estimate of eta",
"but ret_mean was manually specified as FALSE so sampling",
"from posterior of Lambda and Sigma rather than using posterior mean")
}
} else {
ret_mean <- args_null("ret_mean", args, FALSE)
}
## uncollapse collapsed model ##
# Calculate Gamma using MAP estimate for ell
Gamma <- matrix(0, Q, Q)
for (i in 1:P){
Gamma <- Gamma + fitc$VCScale[i]*U[((i-1)*Q+1):(i*Q),]
}
seed <- args_null("seed", args, sample(1:2^15, 1))
fitu <- uncollapsePibble(fitc$Samples, X, Theta, Gamma, Xi, upsilon,
ret_mean=ret_mean, seed=seed)
## pretty output ##
out <- list()
if ("Eta" %in% pars){
out[["Eta"]] <- fitc$Samples
}
if ("Lambda" %in% pars){
out[["Lambda"]] <- fitu$Lambda
}
if ("Sigma" %in% pars){
out[["Sigma"]] <- fitu$Sigma
}
# Marginal Likelihood
d <- D^2 + N*D + D*Q + length(fitc$VCScale)
logMarginalLikelihood <- fitc$LogLik+d/2*log(2*pi)+.5*fitc$logInvNegHessDet - d/2*log(N)
# By default just returns all other parameters
out$N <- N
out$Q <- Q
out$D <- D
out$P <- P
out$Y <- Y
out$upsilon <- upsilon
out$Theta <- Theta
out$X <- X
out$Xi <- Xi
out$U <- U
out$VCScale <- fitc$VCScale
out$init <- init
out$ellinit <- ellinit
out$iter <- dim(fitc$Samples)[3]
# for other methods
out$names_categories <- rownames(Y)
out$names_samples <- colnames(Y)
out$names_covariates <- rownames(X)
out$coord_system <- "alr"
out$alr_base <- D
out$summary <- NULL
out$logMarginalLikelihood
attr(out, "class") <- c("maltipoofit", "pibblefit")
# add names if present
if (use_names) out <- name(out)
verify_maltipoofit(out) # verify the pibblefit object
return(out)
}
# Refit
# Sample prior
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.