Description Usage Arguments Details Value
F1.SCORE.FOR.SPARSE : F1 score for sparse LFMM package (for simulation)
| 1 | F1.SCORE.FOR.SPARSE(a, b, causal)
 | 
| a | alpha effect in mediation (sparse_lfmm$B[,1]) | 
| b | beta effect in mediation (sparse_lfmm$B[,2]) | 
| causal | true result of the simulation | 
Select the markers with a * b != 0 F1 = 2*recall*power/(recall + power)
precision : statistical precision of the test : TP / (TP + FP)
recall : statistical recall of the test : TP / (TP + FN)
f1_score : F1 Score of the test : 2(Pre * Rec) / (Pre + Rec)
length.list : number of pValues lower than "ral" (Bonferroni correction).
TP : True positive
FP : False positive
FN : False negative
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.